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Spin and Isospin Asymmetry, Equation of State and

Neutron Stars

Mohsen Bigdeli · Nariman Roohi · Mina Zamani
Department of Physics, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran

Abstract. In the present work, we have obtained the equation of state for neutron
star matter considering the influence of the ferromagnetic and antiferromagnetic spin
state. We have also investigated the structure of neutron stars. According to our
results, the spin asymmetry stiffens the equation of state and leads to high mass for
the neutron star.

Keywords: Neutron stars, Spin asymmetry, Equation of state

1 Introduction

Neutron stars are hyper-dense and magnetized laboratories for investigating strange phenom-
ena in the nuclear and particle physics. Pulsars and magnetars are two kinds of neutron stars
with strong surface magnetic field. Actually the exact origin of this magnetic field is not yet
known. In the interior of magnetars, the magnetic field strength may be even larger accord-
ing to virial theorem [6] and such strong field may cause spin asymmetry. The occurrence
of such strange phenomena can affect the equation of state (EOS) of neutron star matter.
Theoretically, the equation of state has been applied to determine the maximum mass of
a neutron star which should be in agreement with the precise observations. The accurate
measurement of neutron star mass M = 1.97± 0.04M⊙ in the system PSR J1614-2230 was
one of the most important development in observational data [9]. This precise measurement
is based on Shapiro delay in neutron star-white dwarf binary [12]. Another well-measured
massive neutron star is PSR J0348+0432, with mass about M = 2.01± 0.04M⊙ [1]. Next,
there is an evidence that the black widow pulsar PSR B1957+20 might have even larger
masses approximately MPSR = 2.4M⊙ [17]; however, one have to consider the uncertainties
in this mass estimation. Finally, the largest mass 2.1M⊙ ≤ MNS ≤ 2.7M⊙ has been given
for the gamma-ray black widow pulsar PSR J1311-3430 by simple heated light curve fits
[16]. These massive neutron stars require the equation of state of the system to be rather
stiff. Therefore, theoretical approaches should confirm these observational data.

Recently, several studies used different theoretical approaches showed the stiff EOS for
the neutron star matter. Gandolfi et al. [10] have used quantum Monte Carlo techniques
and calculated the equation of state of neutron star matter with realistic two- and three-
nucleon interactions. Their calculation resulted Mmax < 2.2M⊙ for neutron star mass.
They have also used Auxiliary Field Diffusion Monte Carlo technique by incorporating semi-
phenomenological Hamiltonian including a realistic two-body interaction and many-body
forces [11]. They found the maximum mass of neutron star lies in the range 2.2-2.5 times
of solar mass. Some other attempts by Partha Roy Chowdhury showed the rotating star
mass is around (1.93-1.95)M⊙ [7] . They have applied a pure nucleonic equation of state
for neutron star matter. Shen et al. [14] have constructed a new equation of state for
a wide range of temperatures, densities and proton fractions to be used in astrophysical
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simulations of neutron stars. They have predicted that the maximum mass of neutron star
is about 2.77M⊙ with a radius of about 13.3 km. Sun et al. [15] have investigated neutron
star structure using EOS which has provided by density dependent relativistic Hartree-
Fock theory. Their results showed that maximum mass of neutron stars lies in the range
(2.45− 2.49)M⊙. More recently, we gained MNS = 1.991M⊙ by applying the Lowest Order
Constrained Variational (LOCV) method and using UV14+TNI potential [4].

In this article, we investigate some physical properties of polarized neutron star matter
using the LOCV method and the AV18 potential. This modern equation of state is derived
from an accurate many-body calculation and is based on the cluster expansion of the energy
functional. Moreover, we obtain the particles abundance, equation of state and the structure
of neutron stars. Finally, we compare our results by experimental data.

2 Formalism

We assume the neutron star matter as a charge neutral infinite system that is a mixture
of leptons and interacting nucleons. The energy density of this system can be obtained as
follows,

ε = εN + εl, (1)

where εN (εl) is the energy density of nucleons (leptons). In the following, we determine
these energy densities in more details.

2.1 Energy density of leptons

The energy density of leptons, which are considered as noninteracting Fermi gas, is given
by,

εlep =
∑

l=e, µ

∑
k≤kF

l

(m2
l c

4 + ℏ2c2k2)1/2 . (2)

In this equation, kFl = (6π2ρl/ν)
1/3 is Fermi momentum of leptons and ν is degeneracy. For

fully spin polarized matter, degeneracy is ν = 1.

2.2 Energy density of spin polarized nucleon matter

The nucleonic part of neutron star matter is composed of neutrons and protons with densities
ρn and ρp, respectively. The total number density of the system is

ρ = ρp + ρn,

= (ρ(↑)p + ρ(↓)p ) + (ρ(↑)n + ρ(↓)n ). (3)

The labels (↑) and (↓) are used for spin-up and spin-down nucleons, respectively. The
following parameters can be used to identify a given spin-polarized state for the asymmetric
nuclear matter,

δp =
ρ
(↑)
p − ρ

(↓)
p

ρp
, δn =

ρ
(↑)
n − ρ

(↓)
n

ρn
(4)

δp and δn are proton and neutron spin asymmetry parameters, respectively. In the fully
ferromagnetic (FM) polarized nuclear matter, spin of all neutrons and protons are parallel,
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δn = δp = 1.0, and in the antiferromagnetic (AFM) spin state, we have δn = ±1.0, δp = ∓1.0.
The asymmetry parameter which describes the isospin asymmetry of the system is defined
as,

β =
ρn − ρp

ρ
= 1− 2xp (5)

where xp = ρp/ρ is the proton fraction. Pure neutron matter is totally an asymmetric
nuclear matter with xp = 0, while for the symmetric nuclear matter xp = 1/2. The energy
density of spin-polarized asymmetrical nuclear matter, εnucl can be determined as,

εN = ρ(E +m), (6)

where m = 938.92 MeV is the nucleon mass and E is the total energy per nucleon which is
calculated by using the LOCV method as follows.

We adopt a trial many-body wave function of the form

ψ = Fϕ, (7)

where ϕ is the uncorrelated ground state wave function of A independent nucleons (simply
the Slater determinant of the plane waves) and F = F(1 · · ·A) is an appropriate A-body
correlation operator which can be replaced by a Jastrow form i.e.,

F = S
∏
i>j

f(ij), (8)

in which S is a symmetrizing operator. Now, we consider the cluster expansion of the energy
functional up to the two-body term [8],

Enuc([f ]) =
1

A

⟨ψ|H|ψ⟩
⟨ψ|ψ⟩

= E1 + E2· (9)

The one-body term E1 for an asymmetrical nuclear matter is

E1 =
∑

τ=n,p

∑
σ=↑,↓

∑
k≤kF

σ
τ

ℏ2k2

2mτ
, (10)

where kF
σ
τ = (6π2ρστ )

1/3 is the fermi momentum of each component of spin-polarized asym-
metric nuclear matter. The two-body energy E2 is

E2 =
1

2A

∑
ij

⟨ij |ν(12)| ij − ji⟩, (11)

where

ν(12) = − ℏ2

2m
[f(12), [∇2

12, f(12)]] + f(12)V (12)f(12). (12)

Here, f(12) and V (12) are the two-body correlation and potential. In our calculations,
we use the AV18 two-body potentials [20]. Now, we minimize the two-body energy, Eq.
(11), with respect to the variations in the correlation functions f (k), but subject to the
normalization constraint [13, 2],

1

A

∑
ij

⟨ij
∣∣h2Sz,Tz

− f2(12)
∣∣ ij⟩a = 0, (13)
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where in the case of spin polarized asymmetrical nuclear matter, the Pauli function hSz,Tz (r)
is as follows,

hSz,Tz (r) =


[
1− 9

(
J2
J (kF

(σ)
τ r)

kF
(σ)
τ r

)2]−1/2

Sz = ±1, Tz = ±1

1 otherwise

(14)

From the minimization of the two-body cluster energy, we get a set of coupled and uncoupled
Euler-Lagrange differential equations [5]. We can calculate the correlation functions by
numerically solving these differential equations and then, using these correlation functions,
the two body energy is obtained. Finally, we can compute the energy of the system.

2.3 URCA processes

Now, we investigate direct URCA processes in the spin polarized neutron star matter. In
fully polarized ferromagnetic spin state, the nature of chemical equilibrium is mainly domi-
nated by the following weak interaction processes,

n(↑) → p(↑) + l(↑) + ν̄l(↓)
p(↑) + l(↑) → n(↑) + νl(↓) (15)

Here, νl stands for the leptons neutrinos which leave the system without delay. In this
case, the β-equilibrium conditions and charge neutrality of neutron star matter impose the
following coupled constraints on our calculations,

µe(↑) = µµ(↑) = µn(↑)− µp(↑)
= 4(1− 2xp)S2(ρ, δn = δp = 1) + 8(1− 2xp)

3S4(ρ, δn = δp = 1) (16)

ρp(↑) = ρe(↑) + ρµ(↑) (17)

where S2 and S4 are given by [3],

S2(ρ, δn, δp) =
1

2

(
∂2E(ρ, δn, δp)

∂β2

)
β=0

S4(ρ, δn, δp) =
1

24

(
∂4E(ρ, δn, δp)

∂β4

)
β=0

. (18)

Similarly, The β-equilibrium and the charge neutrality conditions for fully anti-ferromagnetic
spin polarized are,

µe(↓) = µµ(↓) = µn(↓)− µp(↑)
= 4(1− 2xp)S2(ρ, δn = −δp = 1) + 8(1− 2xp)

3S4(ρ, δn = −δp = 1)(19)

ρp(↑) = ρe(↓) + ρµ(↓). (20)

We find the abundance of the particles by solving the coupled equations of charge neutrality
and β-equilibrium conditions. Finally, we calculate the total energy and the equation of
state of the neutron star matter.
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Figure 1: The proton fraction in the neutron star matter for different spin states.

3 Results and discussion

Figure 1 shows the proton fraction, xp, versus the baryon number density, ρ, for unpolarized,
ferromagnetic and antiferromagnetic spin state. It can be seen from this figure that the
abundance of protons is an increasing function of both spin polarization and baryon density.
Therefore, we can conclude that nuclear portion of spin polarized neutron star matter tend
to be symmetric matter. It is also seen that for a given density, the highest value of proton
fraction is gained for the ferromagnetic spin state.

In Figs. 2 and 3, we have presented the energy density, ε, and pressure of neutron
star matter as a function of baryon number density, ρ, for unpolarized, ferromagnetic and
antiferromagnetic spin state, respectively. Here, we have not considered the contribution of
magnetic field. In these figures, we have also plotted the energy density and pressure of the
fully polarized neutron matter (PNM), i.e. β = 1, δn = 1. As we can see, the energy density
and pressure increase by increasing both of spin and isospin asymmetry parameters. we have
concluded that the spontaneous phase transition to ferromagnetic and antiferromanetic spin
state does not occur. If such a transition existed, a crossing of the energies of different
polarizations would have been observed at some density, indicating that the ground state of
the system would be ferromagnetic or antiferromagnetic from that density on. As can be
seen in these figures,there is no sign of such a crossing. Our results can be compared with
those of Vidana’s [18, 19]. Also, it is clear from these figures that the EOS of spin polarized
neutron star matter is stiffer than unpolarized matter.

Now, we can investigate the structure of neutron star by using the equation of state and
integrating the TOV equation. A summary of our results for the maximum mass, radius,
central energy density and central baryon density of neutron star predicted from different
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Figure 2: The energy density of neutron star matter versus baryon number density for for
different spin states and fully polarized neutron matter.
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Figure 3: As a Fig. 2 but for pressure.
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Table 1: Maximum mass, radius, central energy density and central baryon density of neu-
tron star. The gravitational mass is given in solar mass (M⊙).

EOS Mmax R (km) ϵc (1014 g/cm3) ρc (fm−3)
NSM [12] 1.63 8.04 - -
FM-NSM 1.83 10.24 30.28 1.27
AFM-NSM 1.88 10.54 28.67 1.2

PNM 1.99 10.8 27.14 1.13

equations of state is given in table 1. We can conclude from this table that the more
asymmetric is the neutron star matter, the higher maximum mass.

4 Summary and Conclusions

The purpose of this paper is investigating the influence of spin polarization on the equation of
state of neutron star matter and, consequently, the structure of neutron star. We have used
the lowest order constrained variational (LOCV) method by employing the AV18 potentials
for nucleon-nucleon interaction. We conclude that the equation of state become stiffer by
considering spin polarization, and it yields to high maximum mass for neutron stars.
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Abstract. We investigate the growth of matter density perturbations as well as the
generalized second law (GSL) of thermodynamics in the framework of f(R)-gravity. We
consider a spatially flat FRW universe filled with the pressureless matter and radiation
which is enclosed by the dynamical apparent horizon with the Hawking temperature.
For some viable f(R) models containing the Starobinsky, Hu-Sawicki, Exponential,
Tsujikawa and AB models, we first explore numerically the evolution of some cosmo-
logical parameters like the Hubble parameter, the Ricci scalar, the deceleration param-
eter, the density parameters and the equation of state parameters. Then, we examine
the validity of GSL and obtain the growth factor of structure formation. We find that
for the aforementioned models, the GSL is satisfied from the early times to the present
epoch. But in the farther future, the GSL for all models is violated. Our numerical
results also show that for all models, the growth factor for larger structures, like the
ΛCDM model, fit the data very well.

Keywords: Modified theories of gravity, Dark energy

1 Introduction

The observed accelerated expansion of the universe, as evidenced by a host of cosmological
data such as supernovae Ia (SNeIa) [1], cosmic microwave background (CMB) [2, 4], large
scale structure (LSS) [5], came as a great surprise to cosmologists. The present accelerated
phase of the universe expansion reveals new physics missing from our universe’s picture,
and it constitutes the fundamental key to understand the fate of the universe. There are
two representative approaches to explain the current acceleration of the universe. One
is to introduce “dark energy” (DE) [8] in the framework of general relativity (GR). The
other is to consider a theory of modified gravity (MG), such as f(R) gravity, in which
the Einstein-Hilbert action in GR is generalized from the Ricci scalar R to an arbitrary
function of the Ricci scalar [12]. Here, we will focus on the later approach. In [15], it was
shown that a f(R) model with negative and positive powers of Ricci curvature scalar R can
naturally combine the inflation at early times and the cosmic acceleration at late times. It
is actually possible for viable f(R) models for late time acceleration to include inflation by
adding R2 term. Therefore, it is natural to consider combined f(R) models which describe
both primordial and present DE using one f(R) function, albeit one containing two greatly
different characteristic energy scales [16, 17]. In [19], it was pointed out that the f(R)-gravity
can also serve as dark matter (DM). In [20, 23], a set of f(R)-gravity models corresponding
to different DE models were reconstructed. Although a great variety of f(R) models have
been proposed in the literature, most of them is not perfect enough. A viable f(R) model
should simultaneously satisfy stringent solar-system bounds on deviations from GR as well
as accelerate the expansion at late times.
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In order to distinguish between DE and MG, it is crucial to measure the growth of
structure in addition to the expansion history. This is because any given expansion his-
tory predicted by a MG model could be emulated by a smooth DE component. Measuring
the matter velocity field at the locations of the galaxies via spectroscopy helps differenti-
ate between the effect of DE and MG as the source of the accelerating universe through
measurements of Redshift Space Distortions (RSD) [25]. RSD was identified by the recent
“Rocky III” report as among the most powerful ways of addressing whether the acceleration
is caused by DE or MG [26]. For the case of DE model, the growth index is independent of
the size of structure, as the structure formation equation for the scales larger than the Jeans
length is independent of the wavenumbers while in the MG model, the effective gravitational
constant relates the growth index of the structure to its size [27, 28, 29, 30]. An interesting
feature of the f(R) theories is the fact that the gravitational constant in f(R)-gravity, varies
with length scale as well as with time. Thus, the evolution of the matter density perturba-
tion, δm ≡ δρm/ρm, in this theory is affected by the effective Newton coupling constant, Geff ,
and it is scale dependent, too. Therefore, the matter density perturbation is a crucial tool to
distinguish MG from DE model in GR, in particular the standard ΛCDM model. The scale
dependencies of the linear growth rate of metric and density perturbations in f(R)-gravity
can change predictions for cosmological power spectra in the linear regime [31].

On the other hand, the connection between gravity and thermodynamics is one of sur-
prising features of gravity which was first reinforced by Jacobson [32], who associated the
Einstein field equations with the Clausius relation in the context of black hole thermody-
namics. This idea was also extended to the cosmological context and it was shown that the
Friedmann equations in the Einstein gravity [33] can be written in the form of the first law
of thermodynamics (the Clausius relation). The equivalence between the first law of thermo-
dynamics and the Friedmann equation was also found for f(R)-gravity [34]. Besides the first
law, the generalized second law (GSL) of gravitational thermodynamics, which states that
entropy of the fluid inside the horizon plus the geometric entropy do not decrease with time,
was also investigated in f(R)-gravity [36]. The GSL of thermodynamics in the accelerating
universe driven by DE or MG has been also studied extensively in the literature [37]-[58].

All these motivate us to investigate the growth of matter density perturbations in a
class of metric f(R) models and see scale dependence of growth factor. Additionally, we
are interested in examining the validity of GSL in some viable f(R)-gravity models. The
structure of this paper is as follows. In Sec. 2, within the framework of f(R)-gravity
we consider a spatially flat Friedmann-Robertson-Walker (FRW) universe filled with the
pressureless matter and radiation. In Sec. 3, we study the growth rate of matter density
perturbations in f(R)-gravity. In Sec. 4, the GSL of thermodynamics on the dynamical
apparent horizon with the Hawking temperature is explained. In Sec. 5, the cosmological
evolution of f(R) models is illustrated. In Sec. 6, the viability conditions for f(R) models
are discussed. In addition, some viable f(R) models containing the Starobinsky, Hu-Sawicki,
Exponential, Tsujikawa and AB models are introduced. In Sec. 7, we give numerical results
obtained for the evolution of some cosmological parameters, the GSL and the growth of
structure formation in the aforementioned f(R) models. Finally, Sec. 8 is devoted to
conclusions.
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2 f(R)-gravity framework

Within the framework of f(R)-gravity, the modified Einstein-Hilbert action in the Jordan
frame is given by [12]

SJ =

∫ √
−g d4x

[
f(R)

16πG
+ Lmatter

]
, (1)

where G, g, R and Lmatter are the gravitational constant, the determinant of the metric gµν ,
the Ricci scalar and the lagrangian density of the matter inside the universe, respectively.
Also, f(R) is an arbitrary function of the Ricci scalar.

Varying the action (1) with respect to gµν yields

FGµν = 8πGT (m)
µν − 1

2
gµν(RF − f) +∇µ∇νF − gµν□F. (2)

Here, F = df/dR, Gµν = Rµν − 1
2Rgµν and T

(m)
µν is the energy-momentum tensor of the

matter. The gravitational field equations (2) can be rewritten in the standard form as
[59, 61]

Gµν = 8πG
(
T (m)
µν + T (D)

µν

)
, (3)

with

8πGT (D)
µν = (1− F )Gµν − 1

2
gµν(RF − f) +∇µ∇νF − gµν□F. (4)

For a spatially flat FRW metric, taking T
µ(m)
ν = diag(−ρ, p, p, p) in the prefect fluid

form, then the set of field equations (3) reduce to the modified Friedmann equations in the
framework of f(R)-gravity as [62]

3H2 = 8πG(ρ+ ρD), (5)

2Ḣ = −8πG(ρ+ ρD + p+ pD), (6)

where

8πGρD =
1

2

(
RF − f

)
− 3HḞ + 3H2

(
1− F

)
, (7)

8πGpD =

[
−1

2

(
RF − f

)
+ F̈ + 2HḞ − (1− F )

(
2Ḣ + 3H2

)]
, (8)

with

R = 6(Ḣ + 2H2). (9)

Here, H = ȧ/a is the Hubble parameter. Also, ρD and pD are the curvature contribution to
the energy density and pressure which can play the role of DE. Also, ρ = ρBM + ρDM + ρrad
and p = prad = ρrad/3 are the energy density and pressure of the matter inside the universe,
consist of the pressureless baryonic and dark matters as well as the radiation. On the whole
of the paper, the dot and the subscript R denote the derivatives with respect to the cosmic
time t and the Ricci scalar R, respectively.

The energy conservation laws are still given by

ρ̇m + 3Hρm = 0, (10)

ρ̇rad + 4Hρrad = 0, (11)

ρ̇D + 3H(ρD + pD) = 0, (12)
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where ρm = ρBM + ρDM. From Eqs. (10) and (11) one can find

ρ =
ρm0

a3
+
ρrad0

a4
, (13)

where ρm0 = ρBM0 + ρDM0 and ρrad0 are the present values of the energy densities of matter
and radiation. We also choose a0 = 1 for the recent value of the scale factor.

Using the usual definitions of the density parameters

Ωm =
ρm
ρc

=
8πGρm0

3H2a3
, Ωrad =

ρrad
ρc

=
8πGρrad0

3H2a4
, ΩD =

ρD
ρc

=
8πGρD
3H2

, (14)

in which ρc = 3H2/(8πG) is the critical energy density, the modified Friedmann equation
(5) takes the form

1 = Ωm +Ωrad +ΩD. (15)

From the energy conservation (12), the equation of state (EoS) parameter due to the cur-
vature contribution is defined as

ωD =
pD
ρD

= −1− ρ̇D
3HρD

. (16)

Using the modified Friedmann equations (5) and (6), the effective EoS parameter is obtained
as

ωeff =
p+ pD
ρ+ ρD

= −1− 2Ḣ

3H2
. (17)

Also, the two important observational cosmographic parameters called the deceleration q
and the jerk j parameters, respectively related to ä and

...
a , are given by [64]

q = − ä

aH2
= −1− Ḣ

H2
= 1− R

6H2
, (18)

j =

...
a

aH3
= 1− Ḣ

H2
+

Ṙ

6H3
= 2 + q +

Ṙ

6H3
. (19)

Cosmologists believe that the universe transitioned from deceleration to acceleration in
a cosmic jerk. The deceleration to acceleration transition of the universe occurs for different
models with a positive value of the jerk parameter and negative value of the deceleration
parameter [67]. For example, flat ΛCDM models have a constant jerk j = 1 [70].

3 Growth rate of matter density perturbations

Here, we study the growth rate of matter density perturbations in f(R)-gravity. The origin
of structure formation in the universe is seeded by the small quantum fluctuations gener-
ated at the inflationary epoch. These small perturbations over time grew to become all of
the structure we observe. Once the universe becomes matter dominated, primeval density
inhomogeneities (δρm/ρm ∼ 10−5 ) are amplified by gravity and grow into the structure we
see today [71].

The evolution of the matter density contrast δm = δρm/ρm provides an important tool
to distinguish f(R)-gravity and generally MG models from DE inside GR and, in particular,
from the ΛCDM model. We consider the linear scalar perturbations around a flat FRW
background in the Newtonian (longitudinal) gauge as

ds2 = −(1 + 2Ψ)dt2 + a2(t)(1 + 2Φ)dx2, (20)



Structure Formation and GSL in f(R)-gravity 85

with two scalar potentials Ψ and Φ describing the perturbations in the metric. In this
gauge, the matter density perturbation δm and the perturbation of δF (R) obey the following
equations in the Fourier space [72, 73]

δ̈m +

(
2H +

Ḟ

2F

)
δ̇m − 8πGρm

2F
δm =

1

2F

[(
−6H2 +

k2

a2

)
δF + 3H ˙δF + 3 ¨δF

]
, (21)

¨δF + 3H ˙δF +

(
k2

a2
+

F

3FR
− R

3

)
δF =

8πG

3
ρmδm + Ḟ δ̇m, (22)

where k is the comoving wave number. For the modes deep inside the Hubble radius
(k2/a2 ≫ H2), with considering this fact that the time derivative of F is small (|Ḟ | ≪ HF )
and with neglecting the oscillating mode of δF ( ¨δF ≪ H ˙δF ≪ H2), the evolution of matter
density contrast δm is govern by [74, 75, 77]

δ̈m + 2Hδ̇m − 4πGeffρmδm = 0, (23)

where

Geff =
G

F

[
4

3
− 1

3

M2a2

k2 +M2a2

]
, (24)

and M2 = F
3FR

. The fraction of effective gravitational constant to the Newtonian one, i.e.
Geff/G, is defined as screened mass function in the literature [29]. Equation (24) obviously
shows that the screened mass function is the time and scale dependent parameter.

With the help of new variable namely g(a) = δm/a which parameterizes the growth of
structure in the matter, Eq. (23) becomes

d2g

d ln a2
+

(
4 +

Ḣ

H2

)
dg

d ln a
+

(
3 +

Ḣ

H2
− 4πGeffρm

H2

)
g = 0. (25)

In general, there is no analytical solution to this equation. But in [79] for an asymptotic
form of viable f(R) models at high curvature regime given by f(R) = R + R−n where
n > −1, an analytic solution for density perturbations in the matter component during the
matter dominated stage was obtained in terms of hypergeometric functions. In what follows,
we solve the differential equation (25), numerically. To this aim, the natural choice for the
initial conditions are g(am) = 1 and dg

d ln a |a=am= 0, where am = 1/(1+ zm) should be taken
during the matter era, because for the matter dominated universe, i.e. H2 = 8πGρm/3
and Geff/G = 1, the solution of Eq. (23) yields δm = a. The other useful quantity is the
logarithmic rate of change of matter density with respect to the scale factor, known as the
growth factor. The growth factor is defined as [80]

f(z) =
d ln δm
d ln a

= −(1 + z)
d ln δm
dz

, (26)

which is an observational parameter. The redshift space distortion is used as a probe to
measure the growth rate of the structures, f(z), to underpin the expansion history of the
universe and to distinguish between MG and DE theories [30]. In the present work, we
obtain the evolution of linear perturbations relevant to the matter spectrum for the scales;
k = 0.1, 0.01, 0.001 h Mpc−1, where h corresponds to the Hubble parameter today. For
smaller scales, k > 0.2 h Mpc−1, the effect of non-linearity becomes important. In the
non-linear regime, while gravity is still in the weak field limit, density fluctuations are no
longer small and in addition, the density or potential fields may couple to additional scalar
fields introduced in MG theories. The non-linear regime is therefore the hardest to describe
in any general way as the nature of the coupling to scalar fields is theory specific [82].
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4 Generalized second law of thermodynamics

Here, we are interested in examining the validity of the GSL of gravitational thermodynamics
for a given f(R) model. According to the GSL, entropy of the matter inside the horizon
beside the entropy associated with the surface of horizon should not decrease during the
time [33]. As demonstrated by Bekenstein, this law is satisfied by black holes in contact
with their radiation [83]. The entropy of the matter containing the pressureless matter and
radiation inside the horizon is given by the Gibbs’ equation [37]

TAdS = dE + pdV, (27)

where E = (ρm + ρrad)V , V = 4π
3 r̃

3
A is the volume containing the matter with the radius

of the dynamical apparent horizon r̃A = (H2 + K
a2 )

−1/2 and TA = 1
2πr̃A

(
1 − ˙̃rA

2Hr̃A

)
is the

Hawking temperature. Here, p = prad = ρrad/3 is the total pressure of the matter inside
the universe, consist of the pressureless baryonic and dark matters as well as the radiation.
Taking time derivative of Eq. (27) and using the energy equations (10)-(11) as well as the
Friedmann equations (5)-(6) for a spatially flat FRW universe (K = 0), one can find

TAṠ =
r̃2A
2G

(
˙̃rA −Hr̃A

)(
−2Ḣ +H

d

dt
− d2

dt2

)
F. (28)

The horizon entropy in f(R)-gravity is given by SA = AF
4G [84], where A = 4πr̃2A is the area

of the apparent horizon. Taking the time derivative of SA, one can get the evolution of
horizon entropy as

TAṠA =
1

4GH

(
2Hr̃A − ˙̃rA

)(2 ˙̃rA
r̃A

+
d

dt

)
F. (29)

Now, we can calculate the GSL due to different contributions of the matter and horizon.
Adding Eqs. (28) and (29), one can get the GSL in f(R)-gravity as [36]

TAṠtot =
1

4GH4

[
2Ḣ2F − ḢHḞ + 2(Ḣ +H2)F̈

]
, (30)

where Stot = S+SA. Note that Eq. (30) shows that the validity of the GSL, i.e. TAṠtot ≥ 0
depends on the f(R)-gravity model. For the Einstein gravity (F = 1), one can immediately
find that the GSL (30) reduces to

TAṠtot =
Ḣ2

2GH4
≥ 0, (31)

which shows that the GSL is always fulfilled throughout history of the universe. Within
the framework of Einstein’s gravity, it was also shown that the GSL in the presence of DE
is always satisfied during history of the universe [37]. The GSL of thermodynamics is a
universal principle governing the universe. As is well known, the GSL is a powerful tool
to set bounds on astrophysical and cosmological models [86]. The satisfaction of the GSL
of thermodynamics provides further confidence on the thermodynamical interpretation of
gravity in f(R) scenario based on the profound connection between gravity and thermody-
namics. Therefore, as one of the most important theoretical touchstones to examine whether
f(R)-gravity can be an alternative gravitational theory to GR, we examine the validity of
the GSL for some viable f(R) models in subsequent sections.
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5 Cosmological evolution

Here, we recast the differential equations governing the evolution of the universe in dimen-
sionless form which is more suitable for numerical integration. To do so, following [91] we
use the dimensionless quantities

t̄ = H0t, H̄ =
H

H0
, R̄ =

R

H2
0

, (32)

f̄ =
f

H2
0

, F̄ = F, F̄R =
FR

H−2
0

, F̄RR =
FRR

H−4
0

, (33)

where H0 is the Hubble parameter today. With the help of the above definitions and using

d

dt̄
= −H̄(1 + z)

d

dz
, (34)

one can rewrite the modified Friedmann equation (5) as follows

H̄2 = Ωm0

[
(1+z)3+χ(1+z)4

]
+(F̄−1)

[
H̄2−(1+z)H̄H̄ ′]− 1

6

(
f̄−R̄

)
+(1+z)H̄2F̄RR̄

′, (35)

where χ = ρrad0/ρm0 = Ωrad0/Ωm0 and prime ‘′’ denotes a derivative with respect to the
cosmological redshift z = 1

a − 1.
To solve Eq. (35), we introduce new variables as [92]:

yH :=
ρD
ρm0

=
H̄2

Ωm0

− (1 + z)3 − χ(1 + z)4, (36)

and

yR :=
R̄

Ωm0

− 3(1 + z)3. (37)

Taking the derivative of both sides of Eqs. (36) and (37) with respect to redshift z yield

−(1 + z)y′H =
1

3
yR − 4yH, (38)

−(1 + z)y′R = 9(1 + z)3 − 1

H̄2F̄R

{
yH +

1

6Ωm0

(f̄ − R̄)

−(F̄ − 1)

[
yR
6

− yH − 1

2

(
(1 + z)3 + 2χ(1 + z)4

)]}
. (39)

Finally, inserting Eq. (39) into the derivative of Eq. (38) gives a second differential equation
governing yH(z) as [93]

(1 + z)2y′′H + J1(1 + z)y′H + J2yH + J3 = 0, (40)

where

J1 = −3−
(

1− F̄

6H̄2F̄R

)
, (41)

J2 =
2− F̄

3H̄2F̄R
, (42)
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J3 = −3(1 + z)3 − 1

6H̄2F̄R

[
(1− F̄ )

(
(1 + z)3 + 2χ(1 + z)4

)
+

1

3Ωm0

(R̄− f̄)

]
. (43)

Equation (40) cannot be solved analytically. Hence, we need to solve it numerically. To do
so, we use the two initial conditions yH(zi) = 3 and y′H(zi) = 0 which come from the ΛCDM
approximation of f(R) model in high curvature regime. Notice zi is the proper redshift in
which we have RFR(zi) ≤ 10−13.

With the help of Eqs. (14), (16), (17) and (36), one can obtain the evolutionary behaviors
of the matter density parameter, Ωm(z), DE density parameter, ΩD(z), EoS parameter of
DE, ωD(z), and effective EoS parameter, ωeff(z), in terms of yH and its derivatives as follows

Ωm(z) =
(1 + z)3

yH + (1 + z)3 + χ(1 + z)4
, (44)

ΩD(z) =
yH

yH + (1 + z)3 + χ(1 + z)4
, (45)

ωD(z) = −1 +
1 + z

3

(
y′H
yH

)
, (46)

ωeff(z) = −1 +
(1 + z)

3

[
y′H + 3(1 + z)2 + 4χ(1 + z)3

yH + (1 + z)3 + χ(1 + z)4

]
. (47)

Also from Eqs. (18), (19) and (36) one can get the evolutions of the deceleration and jerk
parameters as

q(z) = −1 +
(1 + z)

2

[
y′H + 3(1 + z)2 + 4χ(1 + z)3

yH + (1 + z)3 + χ(1 + z)4

]
, (48)

j(z) = 1 +
(1 + z)

2

[
(1 + z)y′′H − 2y′H + 4χ(1 + z)3

yH + (1 + z)3 + χ(1 + z)4

]
. (49)

6 Viable f(R)-gravity models

The necessary conditions for having a viable f(R) model can be summarized as follows:

(i) F > 0, which keeps the positivity of the effective gravitational coupling constant and
avoids anti-gravity.

(ii) FR > 0, which gives the stability condition of cosmological perturbations [31, 96, 97].

(iii) In the large curvature regime (R/R0 ≫ 1), the f(R) model behaves like ΛCDM model.
It means that f(R) → R − 2Λ, where R0 is the Ricci scalar today. This is required for the
presence of the matter-dominated stage.

(iv) A stable late time de Sitter point; the condition which is required for this stability is,
0 < m(R = Rd) < 1 [98], where m ≡ RFR

F and Rd = 2f(Rd)/F (Rd) is the value of the scalar
curvature at the de Sitter point. Note that the quantity m characterizes the deviation from
the ΛCDM model.

(v) Passing constraint from the equivalence principle and solar system test [99].

Since we are intersected in investigating the growth of structure formation and examin-
ing the GSL in f(R)-gravity, hence in what follows we consider some viable f(R) models
including the Starobinsky, Hu-Sawicki, Exponential, Tsujikawa and AB models which satisfy
the conditions (i) to (v).



Structure Formation and GSL in f(R)-gravity 89

6.1 Starobinsky Model

The Starobinsky f(R) model is as follows [74]

f(R) = R+ λRs

[(
1 +

R2

R2
s

)−n

− 1

]
, (50)

where n > 0, λ and Rs are constant parameters of the model. Following [100], we take n = 2
and λ = 1. Note that in the high z regime (z ≃ zi), we have R/Rs ≫ 1. This yields the
f(R) model (50) to behave like the ΛCDM model, i.e. f(R) = R − 2Λ. Consequently, the
constant parameter Rs is obtained as Rs = 18Ωm0H

2
0/λ.

6.2 Hu-Sawicki Model

This model was reconstructed based on the local observational data and presented by Hu
and Sawicki [92] as

f(R) = R−
c1Rs

(
R
Rs

c2

)n(
R
Rs

)n
+ 1

, (51)

where n > 0, c1, c2 and Rs are constants of the model. For this model, we take n = 4,
c1 = 1.25× 10−3, c2 = 6.56× 10−5 [91], and obtain Rs = 18c2Ωm0H

2
0/c1.

6.3 Exponential Model

This model is defined by the following function [93],

f(R) = R− βRs

(
1− e−

R
Rs

)
, (52)

where β and Rs are two constants of the model. Here, Rs corresponds to the characteristic
curvature modification scale. Here, we take β = 1.8 [93] and obtain Rs = 18Ωm0

H2
0/β.

6.4 Tsujikawa Model

This model was originally presented in [73] as

f(R) = R− λRs tanh

(
R

Rs

)
, (53)

where λ and Rs are the model parameters. For this model, we obtain Rs = 18Ωm0H
2
0/λ and

set λ = 1 [101].

6.5 AB Model

This model was proposed by Appleby and Battye [16, 103] as

f(R) =
R

2
+
ϵ

2
log

[
cosh

(
R
ϵ − b

)
cosh(b)

]
, (54)

where b is a dimensionless constant and ϵ = Rs/
[
b+ log(2 cosh b)

]
. The constant Rs can be

obtained at high curvature regime when the AB f(R) model (54) behaves like the ΛCDM
model, i.e. f(R) = R− 2Λ. This gives

Rs =
−36 Ωm0H

2
0

[
b+ log(2 cosh b)

]
log
(
1−tanh b

2

) .
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Here, we also set b = 1.4.

7 Numerical results

Here to solve Eq. (40) numerically, we choose the cosmological parameters Ωm0 = 0.24,
ΩD0 = 0.76 and Ωrad0 = 4.1× 10−5. As we have already mentioned, we use the two suitable
initial conditions yH(zi) = 3 and y′H(zi) = 0, in which zi is obtained where RFR → 10−13.
For the Starobinsky, Hu-Sawicki, Exponential, Tsujikawa and AB f(R) models, we obtain
zi =15.61, 13.12, 3.66, 3.52 and 3.00, respectively.

In addition, to study the growth rate of matter density perturbations, we numerically
solve Eq. (25) with the initial conditions g(zm) = 1 and (dg/d ln a)|zm = 0, in which zm is
obtained where Ωm(zm) = 1. For the aforementioned models, we obtain zm =14, 13, 12, 14
and 14.36, respectively.

With the help of numerical results obtained for yH(z) in Eq. (40), we can obtain the
evolutionary behaviors of H, R, q, Ωm, ΩD, ωeff , ωD and GSL for our selected f(R) models.
The results for the Starobinsky, Hu-Sawicki, Exponential, Tsujikawa and AB f(R) models
are displayed in Figs. 1-5. Figures show that: (i) the Hubble parameter and the Ricci scalar
decrease during history of the universe. (ii) The deceleration parameter q varies from an early
matter-dominant epoch (q = 0.5) to the de Sitter era (q = −1) in the future, as expected.
It also shows a transition from a cosmic deceleration q > 0 to the acceleration q < 0 in the
near past. The current values of the deceleration parameter for the Starobinsky, Hu-Sawicki,
Exponential, Tsujikawa and AB f(R) models are obtained as q0 = −0.56, −0.60, −0.56,
−0.57 and −0.60, respectively. These are in good agreement with the recent observational
constraint q0 = −0.43+0.13

−0.17 (68% CL) obtained by the cosmography [105]. (iii) The density
parameters ΩD and Ωm increases and decreases, respectively, as z decreases. (iv) The
effective EoS parameter, ωeff , for the all models, starts from an early matter-dominated
regime (i.e. ωeff = 0) and in the late time, z → −1, it behaves like the ΛCDM model,
ωeff → −1. (v) The EoS parameter of DE, ωD, for the all models starts at the phase of
a cosmological constant, i.e. ωD = −1, and evolves from the phantom phase, ωD < −1,
to the non-phantom (quintessence) phase, ωD > −1. The crossing of the phantom divide
line ωD = −1 occurs in the near past as well as farther future. At late times (z → −1),
ωD approaches again to −1 like the ΛCDM model. Moreover, the present values of ωD for
the Starobinsky, Hu-Sawicki, Exponential, Tsujikawa and AB f(R) models are obtained as
ωD0 = −0.94, −0.98, −0.93, −0.94 and −0.97, respectively. These values satisfy the present
observational constraints [2, 4].

(vi) The variation of the GSL shows that it holds for the aforementioned models from
early times to the present epoch. But in the farther future, the GSL for the Starobinsky, Hu-
Sawicki, Exponential, Tsujikawa and AB f(R) models is violated for −0.996 < z < −0.955,
−0.935 < z < −0.909, −0.897 < z < −0.751, −0.997 < z < −0.958 and −0.995 < z <
−0.950, respectively. To investigate this problem in ample detail, using Eq. (17) we rewrite
Eq. (30) in terms of ωeff as

TAṠtot =
1

4G

[
9

2
(1 + ωeff)

2F +
3

2
(1 + ωeff)

Ḟ

H
− (1 + 3ωeff)

F̈

H2

]
, (55)

which shows that in the farther future z → −1 when ωeff → −1 (see Figs. 1-5), we have

TAṠtot ≃
F̈

2GH2
. (56)
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According to Eq. (56), the validity of GSL, i.e. TAṠtot ≥ 0, depends on the sign of F̈ . In
Figs. 1-5, we plot the variation of F̈ /(2H2) versus z in the farther future for the selected
f(R) models. Figures confirm that when the sign of F̈ changes from positive to negative due
to the dominance of DE over non-relativistic matter then the GSL is violated. As we know
that the natural tendency of any system is to evolve toward thermodynamic equilibrium
which is characterized by a state of maximum entropy. In the context of an ever expanding
FRW universe, this translates in that the entropy of the apparent horizon plus that of
matter and fields enclosed by it must fulfill the GSL of thermodynamics, i.e. TAṠtot ≥ 0.
Thus, the violation of the GSL in a f(R) model means that the model does not approach
thermodynamic equilibrium at late times [106]. Of course, as we already mentioned, the GSL
can be used as a powerful tool to set bounds on cosmological f(R) models [86]. It means
that we can set the parameters of a given f(R) model so that the GSL holds throughout
the evolution of the universe. Although the parameters used for each model in Figs. 1-5
are the viable ones, by more fine tuning the model parameters the GSL can be held and
consequently the model approaches thermodynamic equilibrium at late times. For instance,
in AB f(R) model by choosing the model parameter as b = 1.3, the GSL is always satisfied
from early times to the late cosmological history of the universe.

In Figs. 6-10, we plot the evolutions of RFR, Geff/G, g and the growth factor f versus z
for the selected f(R) models. Figures show that: (i) RFR goes to zero for higher values of z
which means that the f(R) models at high z regime behave like the ΛCDM model. (ii) The
screened mass function Geff/G for a given wavenumber k is larger than one which makes
a faster growth of the structures compared to the GR. However, for the higher redshifts,
the screened mass function approaches to unity in which the GR structure formation is
recovered. Note that the deviation of Geff/G from unity for small scale structures (larger k)
is greater than large scale structures (smaller k). (iii) The linear density contrast relative to
its value in a pure matter model g = δ/a starts from an early matter-dominated phase, i.e.
g ≃ 1 and decreases during history of the universe. For a given z, g in the all f(R) models
is greater than that in the ΛCDM model. (iv) The evolution of the growth factor f(z) for
f(R) models and ΛCDM model together with the 11 observational data of the growth factor
listed in Table 1 show that for smaller structures (larger k), the all f(R) models deviate
from the observational data. But for larger structures (smaller k), the growth factor in the
all f(R) models, very similar to the ΛCDM model, fits the data very well.
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Figure 1: The variations of the Hubble parameter H/H0, the Ricci scalar R/H2
0 , the de-

celeration parameter q, the density parameter Ωi, the effective EoS parameter ωeff , the

EoS parameter of DE ωD, the GSL, GTAṠtot and
F̈

2H2 versus redshift z for the Starobinsky
model. Auxiliary parameters are Ωm0 = 0.24, ΩD0 = 0.76, Ωrad0 = 4.1 × 10−5, λ = 1 and
n = 2 .
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Figure 2: Same as Fig. 1 but for the Hu-Sawicki model. Auxiliary parameters are Ωm0 =
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Figure 3: Same as Fig. 1 but for the Exponential model. Auxiliary parameters are Ωm0 =
0.24, ΩD0 = 0.76, Ωrad0 = 4.1× 10−5 and β = 1.8.
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Figure 4: Same as Fig. 1 but for the Tsujikawa model. Auxiliary parameters are Ωm0 = 0.24,
ΩD0 = 0.76, Ωrad0 = 4.1× 10−5 and λ = 1.
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Figure 5: Same as Fig. 1 but for the AB model. Auxiliary parameters are Ωm0 = 0.24,
ΩD0 = 0.76, Ωrad0 = 4.1× 10−5 and b = 1.4.
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Figure 6: The variations of RFR, the screened mass function Geff/G, the linear density
contrast relative to its value in a pure matter model g = δ/a and the growth factor f(z),
versus redshift z for the Starobinsky model.
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Figure 7: Same as Fig. 6 but for the Hu-Sawicki model.
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Figure 8: Same as Fig. 6 but for the Exponential model.
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Figure 9: Same as Fig. 6 but for the Tsujikawa model.
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Figure 10: Same as Fig. 6 but for the AB model.

Table 1: The observational data for the linear growth rate fobs(z).
z 0.15 0.22 0.32 0.35 0.41 0.55 0.60 0.77 0.78 1.4 3.0

fobs 0.51 0.60 0.654 0.70 0.70 0.75 0.73 0.91 0.70 0.90 1.46

1σ 0.11 0.10 0.18 0.18 0.07 0.18 0.07 0.36 0.08 0.24 0.29

Ref. [107] [110] [111] [112] [110] [113] [110] [114] [110] [115] [116]

8 Conclusions

Here, we investigated the evolution of both matter density fluctuations and GSL in some
viable f(R) models containing the Starobinsky, Hu-Sawicki, Exponential, Tsujikawa and AB
models. For the aforementioned models, we first obtained the evolutionary behaviors of the
Hubble parameter, the Ricci scalar, the deceleration parameter, the matter and DE density
parameters, the EoS parameters and the GSL. Then, we explored the growth of structure
formation in the selected f(R) models. Our results show the following.

(i) All of the selected f(R) models can give rise to a late time accelerated expansion phase
of the universe. The deceleration parameter for all models shows a cosmic deceleration q > 0
to acceleration q < 0 transition. The present value of the deceleration parameter takes place
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in the observational range. Also, at late times (z → −1), it approaches a de Sitter regime
(i.e. q → −1), as expected.

(ii) The effective EoS parameter ωeff for the all models starts from the matter dominated
era, ωeff ≃ 0, and in the late time, z → −1, it behaves like the ΛCDM model, ωeff → −1.

(iii) The evolution of the EoS parameter of DE, ωD, shows that the crossing of the
phantom divide line ωD = −1 appears in the near past as well as farther future. This is a
common physical phenomena to the existing viable f(R) models and thus it is one of the
peculiar properties of f(R) gravity models characterizing the deviation from the ΛCDM
model [101].

(iv) The GSL is respected from the early times to the present epoch. But in the farther
future, the GSL for the all models is violated in some ranges of redshift. The physical reason
why the GSL does not hold in the farther future is that the sign of F̈ changes from positive
to negative due to the dominance of DE over non-relativistic matter.

(v) For all models, the screened mass function Geff/G is larger than 1 and in high z
regime goes to 1. The deviation of Geff/G from unity for larger k (smaller structures) is
greater than the smaller k (larger structures). The modification of GR in the framework of
f(R)-gravity gives rise to an effective gravitational constant, Geff , which is time and scale
dependent parameter in contrast to the Newtonian gravitational constant.

(vi) The linear density contrast relative to its value in a pure matter model, g(a) = δm/a,
for all models starts from an early matter-dominated phase, g(a) = 1, and decreases during
history of the universe.

(vii) The evolutionary behavior of the growth factor of linear matter density perturba-
tions, f(z), shows that for all models, the growth factor for smaller k (larger structures) like
the ΛCDM model fits the data very well.

It is worth noting that the f(R)-gravity for very small wavenumbers (larger structures)
is completely indistinguishable from ΛCDM. The main effect of the f(R) theory is in quasi-
linear regimes, large wavenumbers (smaller structures) where the growth rate has a strong
scale dependence and deviates from the standard ΛCDM case. Also, for any given wavenum-
ber corresponding to the larger/smaller structures, the f(R) model can have a growth func-
tion identical to Λ’s at high redshift. Future surveys of the large scale structure such as
eBOSS, DESI, Euclid, or WFIRST [26] may reveal the growth index in terms of wavenum-
ber of the structures and help the f(R)-gravity models to be clearly distinguished from the
ΛCDM model.
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Abstract. In the current paper, we have studied the effect of dark energy on for-
mation where dark energy exists in the background. For this purpose, we used both
WMAP9 and Planck data to study how the radius changes with redshift in these mod-
els. We used different data sets to fix the cosmological parameters to obtain a solution
for a spherical region under collapse. The mechanism of structure formation for dark
and baryonic matter is different. When processed by gravitational instability, den-
sity perturbations have given rise to collapsed dark matter structures, called halos.
These dark matter halos offer the backdrop for the subsequent formation of all col-
lapsed baryonic structures, including stars, galaxies, and galaxy clusters. In Planck
Data forΛCDM , with the presence of dark energy in the background, the formation of
baryonic matter is delayed. Therefore, it is a factor for the largening of the baryonic
matter radius. Accompanying dark energy is entailing an increment of dark matter
virial radius. For WACDM Data, dark energy alongside time-dependent parameter
of state and baryon acoustic oscillations are the reasons for the delay of dark matter
formation and the radius reduction. Due to the lack of data without baryonic acoustic
waves in the background, we are left unable to delineate its impact on the structures.
In WCDM(BAO+H0) and WCDM(H0), the lack of BAO shows a critical role in the
delaying of baryonic matter structure formation. Respectively, it causes growing virial
radius of dark matter. BAO, without taking dark energy into accounts, is the reason
for the increasing and decresing of radius of dark and baryonic matter. It also delays
baryonic matter formation. In ΛCDM(BAO+H0) and ΛCDM(H0), We have studied
ΛCDM data for standard model under two circumstances: (a) ΛCDM(BAO + H0),
(b) ΛCDM(H0) data. Dark energy in this data delays formation and intensifies virial
radius of baryonic matter. Our studies show WCDM andΛCDM have the same effect
on formation if we do not consider dark energy in BG. Planck data, in comparing with
WMAP, has important role in describing standard model.

Keywords: Dark Energy – Scalar Fields – Baryonic Acoustic Waves – Standard Model

1 Introduction

In 1998, two teams studying distant Type Ia supernovae presented independent evidence
that our universe is currently accelerating [1, 2]. The physical origin of cosmic acceleration
remains a deep mystery. The accelerated expansion of the Universe,discovered in 1998, has
raised fascinating questions for cosmology and physics as a whole. Two different approaches
are proposed for this problem: (i) Dark Energy models that modify the stress-energy con-
tent of the Universe, adding an additional component with equation of state w=-1. That
is, we modify the right-hand side of the Einstein equations. (ii) The Modified Gravity cate-
gory corresponds to modifying the left-hand side. For example General Relativity (GR) by
modifying the Einstein-Hilbert action [3, 4, 5].
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The candidates of dark energy include cosmological constant and a variety of scalar field
models. The models based upon modified theories of gravity are faced with the challenges
posed by the local physics. Large scale modification of gravity essentially implicates extra
degrees of freedom which might influence local physics where the Einstein theory of gravity
is approving with observations. By giving a priori a cosmic history, specifying either the
equation of state (EoS) or the scale factor ′′a′′, we can always construct a scalar field
potential which would imitate the desired result. Similar reconstruction can be executed in
scalar tensor theories [6, 7].

The dynamics of realistic Universe are illustrated by an EoS parameter which behaves
differently at different epochs. For instance, in general relativistic description of the dynam-
ics of the spatially flat RW space-time, the fluids with constant EoS parameter w > −1 give

rise to a power-law expansion (a ∝ t
2

3(1+w) ) of the Universe and for an exponential expansion
a ∝ ekt, where k > 0 is a constant; it is required that w = −1. The solution of the Einstein’s
field equation in the presence of a single fluid with a constant EoS parameter gives a relation
for the EoS parameter of a fluid. The discovery of cosmic acceleration is debatably one of
the most important developments in modern cosmology [8, 9].

Most dark energy modelling using scalar fields has followed the Quintessence pattern of a
slowly rolling canonical scalar field. However, there has been increasing interest in loosening
the assumption of a canonical kinetic term. In its most general form, this idea is known as
k-essence [10].

Tachyon dark energy has been explored by many authors, e.g.[6, 11, 12]. Bagla et
al (2003) focused on two specific choices of Tachyon potential, and carried out numerical
analysis of the cosmological evolution in order to constrain them against supernova data
and the growth rate of large-scale structure [6]. Copeland et al (2005) studied a wider
range of potentials, concentrating mainly on analytical inspection of attractor behavior and
the critical point structure without making comparison to specific observations [12]. By
studying a wide range of potentials and testing them directly against current observational
constraints, they aim to combine some of the positive features of each analysis [13].

Parsons and Barrow studied the behavior of the scale factor in the context of inflation in
the early Universe [14]. They pointed out that Einstein’s field equations in the presence of
self-interacting scalar field are invariant under the constant rescaling of the scalar field, and
then they generated the HEL (Hybrid Expansion Law) behavior from power-law expansion.
They also showed that such an expansion of the Universe can be represented as a Friedmann
Universe in the presence of imperfect fluid. Akarsu et al (2014) study HEL expansion in the
context of the history of the Universe after the inflation took place, and mainly investigate
whether this law could be used for explaining the evolution of the Universe starting from the
radiation- or matter-dominated Universe to the currently accelerating Universe. They also
carried out the effective fluid and the single scalar field reconstruction using Quintessence,
Tachyon and Phantom fields, which can capture HEL in the framework of general relativity
[15].

In cosmology, baryon acoustic oscillations (BAO) refers to regular, periodic fluctuations
in the density of the visible baryonic matter (BM) of the Universe. BAO matter clustering
provides a ′′standardruler′′for length scale in cosmology in the same way that supernova
experiments provide a ′′standardcandle′′ for astronomical observations. BAO measurements
help cosmologists understand the nature of dark energy better by constraining cosmological
existing BAO in the background [15].

The effect of the dynamics of dark energy on the growth rate of the large scale structures
in the framework of LCDM and MOND is investigated. For variable dark energy model,
increasing the bending parameter b causes the structure viralizes at lower redshift with
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larger radius. Therefore, the variable dark energy model put off the spherical collapse to the
later times. The case of the low-density model has an intermediate behavior such that the
virialization redshift in this model corresponds with b = 0.4 in variable dark energy model.
Finally, we compared the virialization of structures under the variable dark energy model
with the recent results of MONDian N-body simulations. We showed that the various models
of simulation are consistent with the variable dark energy model with different bending
parameter [16, 17].

The process of the structure formation in the presence of dark energy models must be
studied linear theory in order to address the growth of structures in linear regime and the
effect of dark energy on matte power spectrum and variance, which is then, must be used in
Press- Schechter kind of study of the nonlinear structures [18]. There is ample evidence that
galaxies reside in extended halos of dark matter(DM) which forms through gravitational
instability. Density perturbations grow linearly until they reach a critical density, after
which they turn around from the expansion of the Universe and collapse to form virialized
dark matter halos. These halos continue to grow in mass and size, either by accreting
material from their neighborhood or by merging with other halos. Some of these halos may
survinve as bound entities after merging into a bigger halo, thus giving rise to a population of
subhalos. The illustrated process shows the formation of a dark matter halo in a numerical
simulation of structure formation in a CDM cosmology. It also shows how a small volume
with small perturbations initially expands with the Universe. As time proceeds, small-scale
perturbations grow and collapse to form small halos. At a later stage, these small halos
merge together to form a single virialized DM halo with an ellipsoidal shape, which reveals
some substructure in the form of DM subhalos[19].

Within this paper, we intend to investigate whether a simple scale factor obtained by
multiplying power-law and exponential law, which we will call hybrid expansion law, could
triumph in explaining the observed Universe. We have used scalar fields for investigating
structures formation and the effect dark energy has on it.

Here follows the outline: In Sec. 2, we will inspect the potential and EoS in scalar fields
such as Quintessence, Tachyon and Phantom. In Sec. 3, we will exhibit how the presence of
dark energy affects structure formation by using Planck, WACDM, and WCDM data. We
will finalize the paper summarizing the results in the conclusion section.

2 Scalar fields

Scalar field models have played a vital role in cosmological studies for nearly half a cen-
tury. Those assumed scalar fields have appeared in different cosmological research aspects
to resolve various cosmological problems [21], such as driving inflation, time variable cosmo-
logical constant explaination, and so on. The scalar fields have played one other essential
role for the past fifteen years as a candidate for dark energy proceeding the discovery of
the accelerating expansion of universe. There are so many phenomenological dark energy
models of scalar fields, such as Quintessence, Phantom, quintom and the scalar fields with
non-canonical kinetic energy term [22, 23].

To study the dynamical evolution of those scalar field models and their cosmological
implications with a phase-plane analysis is a very useful and common method. However,
most studies only focus on the Quintessence models (including Phantom, Quintessence,
and quintom) with unique exponential potential and Tachyon models (including Phantom
Tachyon) with inverse square potential. Correspondingly, the dynamical systems are two
dimensional autonomous systems with those particular forms of potentials [24, 25].
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2.1 Quintessence field

Most cosmological models implicitly assume that matter and dark energy interact only
gravitationally. In the absence of an underlying symmetry that would suppress a matter-dark
energy coupling (or interaction), there is no a priori reason for dismissing it. Cosmological
models in which dark energy and matter do not evolve separately but interact with one
another were first introduced to justify the small value of the cosmological constant [26].
Recently, various proposals at the fundamental level, including field Lagrangians, have been
advanced to account for the coupling. Scalar field Lagrangians coupled with matter do not
generate scaling solutions with a long enough DM dominated period as required by structure
formation. The phenomenological model we are going to discuss was constructed to account
for late acceleration in the framework of Einstein’s relativity and to significantly alleviate
the mentioned coincidence problem and escapes the limits imposed by it[27, 28].

Most of the dark energy studies are carried out within the Quintessence pattern of a
slowly rolling canonical scalar field with a potential. For that reason, we will first consider
the Quintessence realization of the HEL. In general relativity, the effective energy density
and EoS parameter of the fluid follow as below [20]:

ρeff (t) = 3(
α

t
+
β

t0
)2 (1)

Weff =
2

3

α

t2
(
α

t
+
β

t0
)−2 − 1 (2)

The potential and EoS parameter as a function of time (t) are then given by the following
expression:

ϕ̇2(t) =
2α

t2
(3)

V (t) = 3(
α

t
+
β

t0
)2 − α

t2
(4)

W (t) =
2α
t2

3(αt + β
t0
)2

− 1 (5)

2.2 Tachyon field

Quintessence pattern relies on the potential energy of scalar fields to drive the late time
acceleration of the Universe. On the other hand, it is also possible to relate the late time
acceleration of the Universe to the kinetic term of the scalar field by relaxing its canonical
kinetic term. This idea is known as k-essence [29]. Tachyon fields can be taken as a particular
case of k-essence models with Dirac-Born-Infeld (DBI) action and can also be motivated by
the string theory [30]. That item together with p = wρ, give the following relations:

ϕ̇2 =
2α
t2

3(αt + β
t0
)2

(6)

V (t) = 3(
α

t
+
β

t0
)2

√√√√1−
2α
t2

3(αt + β
t0
)2

(7)
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w =
2α
t2

3(αt + β
t0
)2

− 1 (8)

2.3 Phantom field

Quintessence and Tachyon fields investigated in the previous two subsections can yield EoS
parameters w ≥ −1. However, present observations allow slight Phantom values for the EoS
parameter, i.e., w < −1. Sources behaving as a Phantom field can arise in braneworlds,
Brans-Dicke scalar-tensor gravity and may be motivated by S-brane constructions in the
string theory [15, 20]. On the other hand, the Phantom energy can, in general, be simply
described by a scalar field with a potential V (ϕ) like the Quintessence dark energy, yet with
a negative kinetic term [31]. Accordingly, the energy density and pressure of the Phantom
field can be given by

ρ = −1

2
ϕ̇2 + V (ϕ) (9)

P = −1

2
ϕ̇2 − V (ϕ) (10)

where ϕ is the Phantom field with potential V (ϕ). We rescale time as t −→ ts− t, where
ts is a sufficiently positive reference time. Thus, the HEL ansatz [1] becomes

a = a0(
ts − t

ts − t0
)αe[β(

ts − t

ts − t0
− 1)] (11)

The effective EoS parameter and energy density ρ are respectively:

ρeff (t) = 3(
α

ts − t
+

β

ts − t0
)2 (12)

weff =
2

3

α

(ts − t)2
(

α

ts − t
+

β

ts − t0
)−2 − 1 (13)

Thus, we can get following equations from Eqs (14− 18):

ϕ̇2 =
−2α

(ts − t)2
(14)

V (t) = 3(
α

ts − t
+

β

ts − t0
)2 − α

(ts − t)2
(15)

w =

2α
(ts−t)2

3( α
ts−t −

β
ts−t0

)2
(16)

where α and β are non-negative constants (α = 0.488, β = 0.444).
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3 Results & Discussion

In the current paper, we have investigated scalar field models for ansatz that are produced
with power-law and exponential type of functions. We have also carried out the evolution
of large scale structures in a single scalar field reconstruction using Quintessence, Tachyon
and Phantom fields and compared them with the standard model (ΛCDM). Following that
purpose, we have applied dark energy effect on formation. We have used two numerical data,
namely WMAP9 and Planck to study how the radius changes with redshift in these models.
It helps us obtain virilization of models, which agrees to structure formation in Cosmological
observations. Results are regularized in three subsections. First, we will investigate Planck
data first, then WACDM and finally WCDM.

3.1 Planck Data

Cosmological observations prior to Planck were consistent with the simplest models of infla-
tion within the slow-roll paradigm. Planck data are remarkably consistent with the predic-
tions of the base ΛCDM cosmology. In the following section, we will use Planck numerical
data [33] to investigate dark energy effect on structure formation in background under two
circumstances: (a) radiation and matter(dark and light separately), (b) radiation, matter
and dark energy , in the BG.

Since the HEL model predicts the beginning of universe with radiation and the current
accelerating phase of the universe at the same time. However, from the CMB test it does
not accommodate the matter-dominated era properly unless we consider the parameter α.
Thus, with the current form of HEL, radiation alone cannot construct structure [15].

According to Newton’s gravity law, the radius of dark and baryonic matter can be given
by

drb
da

=
1

aH((−r2bH2δb +
2GM
rb

)−
1
2 )

drd
da

=
1

aH((−3r2dH
2δd +

2GM
rd

)−
1
2 )

(17)

Where a0 = 1 and δ is matter density contrast. Now using Planck data [32, 33] and
Harrison-Zeldovich spectrum data [16], we obtain numerical data that shows in Tab.1.

In the other case, Friedmann equation encompasses radiation, matter and energy. There,
the numerical value of Planck data is placed in ΛCDM and scalar field models follow as
Tab.1.

We plotted radius evolution of scalar fields and ΛCDM models in Fig.1 by considering
the values of model parameters given in Table 3 from Planck data. According to virial
theorem, when the kinetic energy of structure abates, the total energy becomes potential
energy. In this phase, the structure spends its maximum radius. For comparison, all of the
models are in a plot which shows all models have similar behavior for DM. In other words,
Planck data are compatible with the predictions of the base ΛCDM cosmology. By using
this data, standard model can be explained as structure formation. Hence, dark energy in
the background makes a delay in formation of BM and intensifies its radius. Accompanying
the existence of dark energy is entailing an intensification of DM virial radius. For scalar
field models, dark energy is a factor to the accretion of DM radius. However, BM cannot
be constructed with such data.
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Table 1: The mass of baryonic and DM (1012M⊙) with radiation and dark energy in back-
ground in three models. Using Planck numerical data to investigate dark energy effect on
structure formation in background under two circumstances (a) and (b).

Model Com RMax(Kpc) Rvir(Kpc) ZMax Zvir

a Plank DM 156.268±2.315 81.809±1.404 5.7±0.020 3.4±0.012
BM 467.657±4.428 250.161±2.705 1.3±0.007 0.45±0.001

b ΛCDM DM 156.263±2.315 83.247±1.407 5.7±0.020 3.4±0.012
BM 467.750±4.429 251.441±2.709 1.25±0.007 0.35±0.001

b Phantom DM 156.263±2.315 83.247±1.407 5.7±0.001 3.4±0.012
BM 421.7±4.421 421.7±4.421 2.05±0.009 2.05±0.009

b Tachyon & DM 156.263±2.315 83.247±1.407 5.7±0.020 3.4±0.012
Quintessence BM 422.494±4.429 422.494±4.429 2.05±0.009 2.05±0.009

Figure 1: Left: Radial evolution of BM (dark blue) and DM (light blue) for mass = 1012M⊙
from Planck Data. In this model, radiation and matter exist in background. Right: Di-
agrams show radial evolution of BM and DM for ΛCDM model (red), Phantom model
(green), Tachyon and Quintessence models (yellow). Black curve shows matter and radia-
tion in background. Dots relate virialization of model. In BM, this compatible is interrupted
for log (1 + Z) < 0.5.
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Figure 2: The same as in Figure 1 but by using WACDM Data. Black curve shows matter
and radiation in background. Dots relate virialization of model.

3.2 WACDM Data

A major challenge for cosmology today is to elucidate the nature of the dark energy driving
the accelerated expansion of the Universe. Among cosmological models, there is one that
depicts flat universe with dark energy where equation of state is time-dependent. Scalar
field models are time-dependent. Therefore, we analyzed redshifts in which parameter of
state has a negative value. For Tachyon and Quintessence models, this value is z < 2.273.
However, in the case of the Phantom scenario, the ansatz and Hubble parameter diverge
as t −→ ts , and thus expose the Universe to Big Rip. We supposed that in flat universe,
radiation, matter and energy exist in the background. Tab.2 shows numerical data that is
given from WACDM data.

Table 2: The same as in Table 1 but by using WACDM Data.
Model Comp RMax(Kpc) Rvir(Kpc) ZMax Zvir

a Scalar DM 157±2.316 84.087±1.410 5.74±0.020 3.44±0.012
field BM 469.245±4.431 283.47±3.070 1.34±0.007 0.49±0.001

b Phantom DM 157±2.316 78.914±1.397 5.74±0.020 3.39±0.011
BM 470.181±4.432 406.64±4.360 1.24±0.007 0.59±0.001

b Tachyon & DM 157±2.316 78.914±1.397 5.74±0.020 3.39±0.011
Quintessence BM 469.967±4.431 388.905±4.115 1.29±0.007 0.59±0.001

Since DM is constructed earlier than BM, for investigating dark energy effect on struc-
ture, we compare redshift virilism with a state wherein energy is not in the background.
Our study shows that dark energy alongside time-dependent parameter of state and baryon
acoustic oscillations. These are the factor for the reducing of DM radius. Due to lack of data
on the absence of baryonic acoustic waves in the background, we are left unable to delineate
its impact on the structures. The absence mentioned is on the account of the simultaneous
existence of dark energy and BAO in the background.
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3.3 WCDM Data

WCDM data has investigated flat universe with dark energy by observing the effect of baryon
acoustic oscillations. The BAO angular scale serves as a standard ruler and allows us to
map out the expansion history of the Universe after last scattering. The BAO scale, which
is extracted from galaxy redshift surveys, provides a constraint on the late-time geometry
and breaks degeneracies with other cosmological parameters.

3.3.1 WCDM(BAO +H0)&WCDM(H0)

Within the following subsection, first, we studied WCDM data for scalar fields under two
circumstances: (a) WCDM (H0+BAO), (b) WCDM (H0) data then, inspected the presence
of dark energy in the background. Tab.3 , Tab.4 and Fig.3 show numerical data that is given
from WCDM data.

Table 3: The same as in Table 1 but by using WCDM(H0 +BAO) Data.

Model Com RMax(Kpc) Rvir(Kpc) ZMax Zvir

a Scalar DM 156.783±2.317 81.955±1.405 5.71±0.020 3.41±0.012
field BM 469.13±4.430 255.459±2.715 1.31±0.007 0.46±0.001

b Phantom DM 156.778±2.317 83.553±1.408 5.71±0.020 3.41±0.012
BM 469.056±4.430 466.667±4.427 1.26±0.006 1.01±0.005

b Tachyon & DM 156.778±2.317 83.553±1.408 5.71±0.020 3.41±0.012
Quintessence BM 468.786±4.429 464.351±4.421 1.31±4.421 1.01±0.005

Table 4: The same as in Table 1 but by using WCDM(H0) Data.

Model Com RMax(Kpc) Rvir(Kpc) ZMax Zvir

a Scalar DM 157.337±2.318 81.578±1.403 5.8±0.022 3.45±0.012
field BM 470.402±4.432 281.74±2.773 1.35±0.007 0.5±0.001

b Phantom DM 157.374±2.318 85.616±1.411 5.75±0.021 3.45±0.012
BM 471.203±4.439 312.244±3.001 1.25±0.007 0.4±0.001

b Tachyon & DM 157.374±2.318 85.616±1.411 5.75±0.021 3.45±0.012
Quintessence BM 470.832±4.433 275.387±2.755 1.3±0.007 0.4±0.001

The presence of baryon acoustic oscillations plays a critical role in the postponing of dark
and baryonic matter structure formation. Respectively, it causes increasing and decreasing
virial radius of dark and baryonic matter. Dark energy, without taking BAO into accounts,
is the reason for the declining of BM radius. If we consider both of them, we will be facing
an increment of DM radius.

3.3.2 ΛCDM(BAO +H0)&ΛCDM(H0)

Through this instance, we studied ΛCDM data for standard model under two circumstances:
(a) ΛCDM(BAO + H0), (b) ΛCDM(H0) data. Then, we suppose that in flat universe,
radiation, matter and energy exist in the background. Tab.5 and Fig.4 show this success.

Dark energy in this data grows virial radius of both of them. The structure formation
in a standard model is dependent on BAO. In other words, BAO is a necessity factor for
constructing structure in the standard model.
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Figure 3: The same as in Figure 1 but by using Left: WCDM(BAO +H0)&WCDM(H0)
Data. Right: WCDM(BAO + H0)&WCDM(H0) Data for Phantom, Tachyon and
Quintessence models that radiation, matter and dark energy exist in background. Dots
relate virialization of model.

Table 5: The same as in Table 1 but by using ΛCDMData.
Data Com RMax(Kpc) Rvir(Kpc) ZMax Zvir

a ΛCDM DM 157.111±2.316 80.160±1.398 5.77±0.022 3.42±0.012
(BAO +H0) BM 470.175±4.430 260.364±2.601 1.32±0.007 0.47±0.001

a ΛCDM DM 157.55±2.319 78.948±1.389 5.79±0.022 3.44±0.012
(H0) BM 471.371±4.433 268.541±2.696 1.34±0.007 0.49±0.001

b ΛCDM DM 157.149±2.316 84.078±1.409 5.72±0.022 3.42±0.012
(BAO +H0) BM 470.144±4.432 271.715±2.720 1.27±0.007 0.37±0.001

b ΛCDM DM 157.545±2.317 645.903±2.544 5.79±0.021 -1.91±0.001
(H0) BM 471.203±4.431 914.531±10.117 1.29±0.007 -1.91±0.001
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Figure 4: The same as in Figure 1. Left:ΛCDM(BAO + H0)&ΛCDM(H0) Data. Right:
ΛCDM Data.

4 Conclusion

In this paper, We have examined the hybrid form of scale factor, namely, a product of
power law and an exponential function, which provides a simple mechanism of transition
from decelerating to accelerating phase. Two numerical data are utilized to study how the
radius of structures can remark in these models, as the virialization of structures depends
strongly on the background. We used different data sets to fix the cosmological parameters
to get a solution for a spherical region under collapse. We dealt with the problem of the
structure formation in the framework of Cosmological Models under the influence of dark
energy and BAO.

The mechanism of structure formation for DM and BM is different. Due to hierarchical
structure formation, because of gravitational instability, density perturbations have given
rise to collapsed DM structures, is called halos. These DM halos provide the backdrop for
the subsequent formation of all collapsed baryonic structures, including stars, galaxies, and
galaxy clusters.

We showed that the dark energy dominated background delays the virialization of struc-
tures and formation of BM which proceeds a larger structures. In other word, it causes an
increase of virial radius of DM without deferment. Using Planck data in scalar field models
shows that dark energy is an element to the intensification of dark matter radius. However,
BM cannot be constructed with such data. Our study on WACDM data shows that the
presence of dark energy alongside time-dependent parameter of state and baryon acoustic
oscillations are shrinking reasons of radius for DM and absence of structure for BM. Due to
lack of data on the absence of baryonic acoustic waves in the background, we are left unable
to delineate its impact on the structures.

Finally on WCDM data, the presence of baryon acoustic oscillations plays an influential
role in postponing. In turn, it causes decrease and increase to virial radius of dark and
baryonic matter and the absence of BAO delays formation and abates virial radius of BM.
The structure formation in a standard model is dependent on BAO. WCDM and ΛCDM
have the same effect on formation if we do not consider dark energy in BG. Planck data, in
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comparing with WMAP, has important role in describing standard model.
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Abstract. Today, great observatories around the world, devote a substantial amount
of observing time to sky surveys. The resulted images are inputs of source finder
modules. These modules search for the target objects and provide us with source cata-
logues. We sought to quantify the ability of detection tools in recovering faint galaxies
regularly encountered in deep surveys. Our approach was based on completeness es-
timation in magnitude - size plane. The adopted method was incorporating artificial
galaxies. We improvised a software that estimates completeness in a given interval of
magnitude and size. The software generates artificial galaxies and iteratively inserts
them to the source finder modules input image. Evaluating the ratio of the number of
detected to the number of inserted artificial galaxies provides us with means to estimate
completeness. Completeness estimation is helpful in selecting unbiased samples.

Keywords: Galaxies: structure, galaxies: size, magnitude

1 Introduction

The past two decades have seen the growing number of imaging surveys of the extragalactic
sky. Deep field optical/NIR imaging surveys such as COSMOS [19], HUDF [1], CANDELS
[16] and GOODS [14] have become the frontier of astronomical studies in various topics.
Moreover, within the next few years, imaging surveys with unprecedented depth and area
(e.g. LSST [18] and Euclid [21]) will take place.

Any imaging survey is restricted and biased in its sampling of the galaxy population
by a number of selection effects (e.g. [10, 11, 17, 4]). The visibility of a particular galaxy
depends both on its intrinsic properties (e.g. brightness, light profile, apparent scale size)
and the nature of the survey imaging data (e.g. exposure time and sky brightness) [4].

When CCD is used in acquisition of imaging data, outcome images will be of digital
type. Acquired images, after passing the process of data reduction, will be given to source
finder modules. These modules will identify the sources targeted by the survey and provide
us with their photometric and structural properties.

In the case of galaxies, surface brightness is seen to be a key factor in their detectability
by source finder modules. Generally, galaxies with lower surface brightness are harder to
detect [14, 2, 4]. However, detection is a complex process and surface brightness is not the
only factor in determining the detectability of a particular galaxy. For instance, blending
with other sources, image artefacts as well as structural properties such as morphological
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type and position angle can be mentioned as factors playing a role in their detectability
[3]. There is no strict low surface brightness threshold, above which, the detectability of
galaxies is assured. We expect that, as the surface brightness of a particular galaxy decreases,
the probability of its detection also reduces. Completeness parameter has been defined to
quantify the probability of detection [29, 20, 31, 7]. This parameter is defined as the ratio
of the number of detected objects to the total number of objects present in the image.

The prospect of forthcoming imaging surveys with unprecedented depth and area testifies
to the significance of automated and efficient modules to evaluate their completeness. In
this paper, we describe a software package which is improvised to estimate completeness of
galaxy detection as a function of apparent magnitude and half-light radius. This paper is
organized as follows. In section 2, the methodology of the software is described. Section 3
is devoted to the study of the usage and efficiency of software. Ultimately, summary will be
presented in section 4.

2 Methods

We based the completeness estimation procedure on incorporation of artificial galaxies. The
core of DASTWAR1 is an IRAF script written in IRAF command language. The software
generates artificial galaxies and iteratively inserts them to the source finder modules input
image (cf. [29, 20, 14, 4, 6]). Next, it utilizes the source finder module to detect the inserted
artificial galaxies. By comparing the extracted catalog to the catalog of artificial galaxies
inserted to the input image, completeness would be estimated. Completeness is defined as
the ratio of the number of extracted artificial galaxies to the number of artificial galaxies
present in the image. DASTWAR performs completeness estimation as a function of apparent
magnitude and half-light radius of artificial galaxies (e.g. [14, 2, 4]). Inserting artificial
galaxies to the observed image preserves any observational artifacts and sky noise when
quantifying the probability of detection [6].

The software makes use of IRAF artdada package for generating artificial galaxies 2. This
package has been widely used to simulate galaxies in deep images (e.g. [14, 4]). Simulated
galaxies are of either early-type or late-type morphology, respectively obeying de Vauculeurs
[9] and Exponential [12] surface brightness laws. The package enables the generation of
artificial galaxies in a given bin of apparent magnitude and half-light radius. The software
makes use of SExtractor [3] as source finder module. SExtractor is the standard detecting
tool in extracting galaxies based on deep optical/NIR images. SExtractor isolates sources
in the image given as input, and carries out photometric and structural measurements. Also,
a catalogue of detected sources along with their photometric and structural parameters is
returned at the end.

The workflow of the procedure is depicted in Fig. 1. The procedure starts with obtaining
the values of the input parameters and the input image, which are provided by the user (see
Table 1). Next, the software initiates generating the simulated images. A simulated image
is a modified version of the input image. This modified version is constructed by inserting
the artificial galaxies to the input image. The software utilizes IRAF artdata package to
produce artificial galaxies according to the prescriptions of the user indicated by values of
input parameters. Among the parameters which could be set by the user are the number of
artificial galaxies to insert, their apparent magnitude and half-light radius tolerance, their
morphological distribution and their inclination tolerance (see Table 1). It should be noted
that, the software would not modify the input image before inserting artificial galaxies.

1Dastwar (pronounced Dastoor in present day persian) is the persian word for adviser.
2ftp://iraf.noao.edu/iraf/docs/glos210b.ps.Z
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Figure 1: Workflow of the software is illustrated (see text).

Hence, the user has to decide whether to mask real sources or to leave them intact in the
input image.

A two-dimensional point spread function, provided by the user, will be convolved with
artificial galaxies before inserting them to the input image. Artificial galaxies will be uni-
formly distributed throughout a subregion of the input image defined by the user. Also their
apparent magnitude and half-light radius will be uniformly distributed in the apparent mag-
nitude and half-light radius tolerances indicated by the user. For subsequent referencing,
properties of the inserted artificial galaxies, including their positions, apparent magnitudes
and half-light radii will be saved in a catalog.

The process of generating the simulated images is iterative. The outcome of each iteration
is a single simulated image (see Fig. 2). The total number of iterations will be set by giving
value to the appropriate parameter. Willing to end up with an adequate completeness
estimation necessitates balance between the number of artificial galaxies in each simulated
image and the total number of iterations. When sufficient number of simulated images are
generated, software moves forward to the next step.

As a result of complex observing strategies which are at work in deep imaging surveys
(e.g. dithering [22]), yielded images are not generally associated with flat edges. Also, these
images normally result from stacking a number of slide images on top of one another. In
consequence, the edges of the obtained images are usually indentated and a set of pixels in
the image array are seen to have zero value. In such an image, the entire area is not covered
by data. If user notifies the software of the partial data-coverage in the input image, a mask
image will be created. It is an image with the same width and height as the input image,
in which the partial area covered by data is indicated. This mask image will be multiplied
with each of the simulated images. In this way, the analogy of the data-covered area in the
input image and the simulated images is assured. If user has not warned about the partial
data-coverage in the input image, software leaps to the next step.

Now, all is at hand to start source detection. For this task, DASTWAR makes use of
SExtractor [3]. SExtractor will be executed on each of the simulated images based on the
input parameters set by the user. Hence, for each simulated image, we will be provided by
a catalog of detected sources along with their photometric and structural properties.

Amongst the measured quantities for each detected source is the pixel position of the
center. These positions will be used to crossmatch the SExtractor provided catalog with
the catalog of artificial galaxies inserted to each simulated image. The radius of crossmatch
will be set by the user. An artificial galaxy is designated as recovered if centroid of a unique
detected source falls within its circle of crossmatch. For each simulated image, recovered
galaxies will be listed in a new catalogue. Each line of this catalogue represents an artificial
galaxy which was successfully detected by SExtractor.

At this point, for each of the simulated images, two catalogs are at hand. The first one
is the catalog of inserted artificial galaxies and the second one is the catalog of recovered ar-
tificial galaxies. By accumulating the catalogs of inserted artificial galaxies into one catalog,
we end up in the master catalog of artificial galaxies. This master catalog enlists all of the
artificial galaxies inserted to the set of simulated images. In the same manner master cata-
log of recovered artificial galaxies is constructed. The latter catalog embraces the list of all
artificial galaxies which are already detected by the source finder module. Comparing these
two master catalogs enable us to quantify the degree of completeness. DASTWAR estimates
completeness as a function of artificial galaxies’ apparent magnitude and half-light radius.
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Table 1: Input parameters of DASTWAR are listed in this table. IRAF artdada package
parameters are marked with star.

Parameter Data Type Description
nrun int Number of iterations
ngal int Number of galaxies generated in each iteration
xcormin real Minimum X coordinate of artificial galaxies
ycormin real Minimum Y coordinate of artificial galaxies
xcormax real Maximum X coordinate of artificial galaxies
ycormax real Maximum Y coordinate of artificial galaxies
magmin real Upper magnitude limit for artificial galaxies
magmax real Lower magnitude limit for artificial galaxies
minrad real Minimum half-light ratio of artificial galaxies
maxrad real Maximum half-light ratio to artificial galaxies
*efrac real Fraction of early-type galaxies
*axisrat real Minimum axis ratio for early-type galaxies
*srefrac real Late-type/early-type radius at a given magnitude
*abs real Absorption in edge-on late-type galaxies
inpimage char Input image name
wimage char Weight image name
psf char PSF image name
*poinoi bool Add Poisson noise?
*rad real Seeing radius/scale (pixels)
*psfar real Star/PSF axial ratio
*psfpa real Star/PSF position angle
*magzp real Magnitude zero point
*ccdgain real Gain
*ccdreadnoise real CCD Read noise
seconfig char Name of Sextractor configuration file
sennw char Name of Sextractor Neural network/weights file
separam char Name of Sextractor Parameter file
seconv char Name of Sextractor convolution kernel
dx_gal int X-range for coverage tests (artificial galaxies)
dy_gal int Y-range for coverage tests (artificial galaxies)
dx_sex int X-range for coverage tests (detected sources)
dy_sex int Y-range for coverage tests (detected sources)
magbin int Number of magnitude bins for completeness estimation
sizebin int Number of size bins for completeness estimation
covcheck bool Apply coverage checks?
crop bool Apply cropping?
clean int Delete additional files made?
pixsize real Image pixel scale (arcsec/pix)
maxdist_arcs real Cross-match radius (arcsec)
compoutput char Completeness matrix file name
*background real Default background
*nxc int Number of PSF centers per pixel in X
*nyc int Number of PSF centers per pixel in Y
*nxsub int Number of pixel subsamples in X
*nysub int Number of pixel subsamples in Y
*nxgsub int Number of galaxy pixel subsamples in X
*nygsub int Number of galaxy pixel subsamples in Y
*dyrange real Profile intensity dynamic range
*psfrange real PSF convolution dynamic range
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Figure 2: Five examples of simulated images are shown in this figure. In the uppermost left
mosaic, we have shown the input image and the remaining mosaics illustrate examples of
simulated images. The input image is a 512 × 512 pixels cutout of v2.0 images of HST/ACS
in southern GOODS field which is acquired in F850LP band.

Table 2: Five lines of DASTWAR’s output file are given as example.

Label 1 Label 2 Magnitude Half-light radius Completeness Detected Inserted
31 10 20.95 0.9189 0.842105 32 38
31 11 21.05 0.9189 0.932203 55 59
31 12 21.15 0.9189 0.886364 39 44
31 13 21.25 0.9189 0.903846 47 52
31 14 21.35 0.9189 0.857143 48 56

As was noted earlier, galaxies will be uniformly distributed throughout a subregion of
the input image that is defined by user. Occasionally, an inserted artificial galaxy would
reside in a position too close to the edge of the image or edge of the data-covered area. In
such instances, the light profile of the artificial galaxy may become cropped; a phenomenon
which usually results in its erroneous detection. When user warns DASTWAR of the possibility
of existence of such sources, software attempts to identify them. This is done by defining a
rectangular mask for each artificial galaxy, width and length of which is to be determined by
the user. Center of this mask will be coincided to the center of each of the inserted artificial
galaxies. Inspecting values of the pixels residing inside the mask would characterize the
distance between the object and the edges. When an object is identified as being too close
to the edges, it will be marked with edge-grazing flag.

The software proceeds to compute completeness as a function of apparent magnitude and
half-light radius. Completeness is defined as the ratio of the number of detected artificial
galaxies to the number of inserted galaxies not marked with edge-grazing flag. Completeness
is estimated as a function of artificial galaxies apparent magnitude and half-light radius.
Accordingly, inserted and recovered artificial galaxies are enumerated in bins of apparent
magnitude and half-light radius. The plane of apparent magnitude and half-light radius
is divided to two dimensional bins. Number of these bins will be determined by user and
completeness will be assessed specifically in each bin.

The output of the software is a text file, each line of which provides the result of com-
pleteness estimation for each of the two dimensional bins. The first two columns contain two
labels which uniquely designate every two dimensional bin. In the third and fourth columns
magnitude and half-light radius of the center of two dimensional bin are given respectively.
Completeness value for the two dimensional bin is written in the fifth column. Finally, in
sixth and seventh column, the number of detected and inserted artificial galaxies for each
bin are given.

3 Example

In this section, we intend to demonstrate the usage and efficiency of the software. The
inspection is based on Hubble Space Telescopes data acquired during GOODS 4 survey [14].

4Great Observatories Origins Deep Survey
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The input image given to the software for completeness estimation has been selected from
southern GOODS field and covers nearly 25 square arcminutes. We have used images taken
in F850LP band which is the band normally utilized for detection [8]. We based our study
on version v2.0 of HST/ACS data [13].

The number of iterations was set to 165 and in each iteration 1500 artificial galaxies
generated. In total, 247500 artificial galaxies were used in the procedure. Artificial galaxies
uniformly populate the apparent magnitude range 20 ≤ m ≤ 30 (AB magnitude system
measured in F850LP band) and half-light radius range 0.01 ≤ r50 ≤ 1.5 arcseconds. The
F850LP-band magnitude zero point was set to 24.862 which is obtained from this URL 6

[30]. The apparent magnitude range was divided to 100 bins while the half-light radius range
was intersected to 50 bins. The average number of inserted galaxies in each two-dimensional
bin is 50.

The fraction of early-type galaxies to late-type galaxies was set to one. Also, the ratio
between half-flux scale radii of late-type and early-type galaxies at a given magnitude was
equal to one. For early-type galaxies the axial ratio (b/a) was randomly selected in the
range 0.3 ≤ b/a ≤ 1.0. For late-type galaxies, inclinations range uniformly between 0 and
90 degrees. We did not apply internal absorption correction.

As was noted in §2, before being inserted to input image, surface brightness profile
of the artificial galaxy is to be convolved with appropriate point spread function. For
the present study, point spread function is inferred from detailed examination of surface
brightness profiles of spectroscopically confirmed stars. Using the updated version (v2) of
the GOODS-MUSIC catalogue [15, 28], we selected 138 objects with spectroscopic redshift
quality flag < 2 and zspec = 0 as stars (cf. [5]). Moreover, we included 63 stars in GOODS-
South field identified by [23] based on low resolution spectra acquired in PEARS survey
[24]. Of 172 unique stars thus spotted throughout the southern GOODS field, 45 stars
reside within the region covered in our input image. Surface brightness profile of 42 stars of
the selected sample were used to construct point spread function. For construction of point
spread function, we utilized IRAF DAOPHOT package.

When convolved with point spread function, artificial galaxies inserted to the input im-
age without additional Poisson noise. As a result, for bright objects, the noise is slightly
underestimated while for faint objects this shortcut does not affect the results as the back-
ground completely dominates (cf. [14]). We used the SExtractor configuration files which
were optimized for detection based on v2.0 of HST/ACS images of southern GOODS field
in F850LP band and are publicly available through this URL 7

The crossmatch radius used to isolate the recovered artificial galaxies was 0.15 arcsec.
Recalling the value of 0.03 arcsec/pix for pixel scale, 0.15 arcsec is equivalent to 5 pixels in
the input image. The crossmatch radius was made conservatively small to ensure that the
chance of erroneous matches to existing objects is negligible (cf. [4]). The width and length
of the rectangular mask defined to identify edge-grazed galaxies were equally set to 3 pixels.

The resulting distribution of completeness in the plane of apparent magnitude and half-
light radius is shown in Fig. 3. Contours of constant completeness are illustrated. It is
seen that an increase in apparent magnitude in constant half light radius is associated with
a decrease in completeness. The same behavior is seen when half-light radius is increased
in fixed apparent magnitude. Such a trend introduces surface brightness as a key factor in
detectability of galaxies.

Moreover, it should be noted that constant completeness contours tend to fainter ap-
parent magnitudes as half-light radius becomes smaller. For instance, at r50 = 1.5 arcsec,

6http://archive.stsci.edu/pub/hlsp/goods/v2/h goods v2.0 rdm.html
7http://archive.stsci.edu/pub/hlsp/goods/catlog r2/h r2.0z readme.html
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Figure 3: Contour plot representing completeness values in a plane of F850LP magnitude
and half-light radius (in units of arcsec.) is shown.

the 70% completeness contour is located at m ∼ 23 while at r50 = 0.15 arcsec the same
contour is seen at m ∼ 27. This fact also testifies to the crucial role of surface brightness
in detectability of galaxies. It is also seen that the space between the adjacent contours
are not uniform. In high surface brightness areas, the contours are more apart compared
to low surface brightness regions. This fact reflects that, in spite of its importance, surface
brightness is not the only factor that influences the detectability of galaxies.

In a similar study which dates back to 2004 [14], Giavalisco et al. assessed completeness
limits based on version v0.5 of HST/ACS images acquired in southern GOODS field in
F850LP band. They adopted an analogous method for estimation of completeness as a
function of apparent magnitude and half-light radius (see Fig. 4 in [14]). In their study,
IRAF artdata package was utilized for generating artificial galaxies and SExtractor was
used as source finder module. Their artificial galaxies uniformly populated the magnitude
range 20m28 (AB magnitude system measured in F850LP band) and the range of galaxy
half-light radius was 0.01 ≤ r50 ≤ 1.5 arcseconds. Morphologically, half of their generated
galaxies were of early-type morphology and the remaining half were of late-type morphology.
Early-type galaxies had a uniform axial ratio distribution in the range 0.3 ≤ b/a ≤ 0.9.
Internal absorption was ignored and no additional Poisson noise was at work.

The methodological homology noticed between the two studies enables the comparison of



128 Ali Koohpaee et al.

results and interpretation of the differences in terms of differences in the inputs. Comparison
between the two completeness distributions reveals the shifting of completeness contours
toward fainter apparent magnitudes in our distribution. Hence, our study implies a higher
completeness at a given apparent magnitude in constant half-light radius.

Such a difference can be attributed to the difference in depth of the input images used
for the two studies. Our study was based on version v2.0 [13], a significant improvement
upon the previous v1.0 release, which is itself an improved version of v0.5 release of GOODS
reduced HST/ACS images. Version v1.0 data release provided data acquired as part of the
original GOODS HST/ACS program [14]. Version 2.0 augments this with additional data
acquired on the two GOODS fields during the search for high redshift Type Ia supernovae
carried out during Cycles 12 and 13 (Program ID 9727, P.I. Saul Perlmutter, and 9728,
10339,10340, P.I. Adam Riess [27, 26, 25]. As a result of the additional data, the v2.0
mosaics offer roughly twice the exposure time in the F850LP band compared to version v1.0
images.

4 Summary

Within the next few years, imaging surveys with unprecedented depth and area will revo-
lutionize our vision of the extragalactic sky. Nevertheless, any imaging survey is restricted
and biased in its sampling of the galaxy population. Completeness parameter, which quan-
tifies the probability of detection, has proved to be a useful and conventional parameter
in assessing the bias in sampling of galaxies. Given the prospect of forthcoming imaging
surveys, automated and efficient modules to evaluate their completeness are demanded.

Throughout this paper, we described a software package, named DASTWAR, which was
improvised to estimate completeness of galaxy detection as a function of apparent magnitude
and half-light radius parameters. The software generates artificial galaxies and iteratively
inserts them into the input image and then utilizes source finder module to detect them.
Comparing the extracted catalog with the catalog of artificial galaxies inserted to input
image, yields completeness in the magnitude-size plane (see section 2).

In order to demonstrate the efficiency of the software, we utilized it for completeness
estimation on the basis of version v2.0 HST/ACS data in southern GOODS field. In total,
247500 artificial galaxies were generated and used in the procedure. Distribution of com-
pleteness values in the magnitude-size plane shows that an increase in apparent magnitude
in constant half-light radius is associated with a decrease in completeness and the same trend
is noticed when half-light radius is increased in fixed apparent magnitude. We interpreted
the mentioned trend as an evidence of pivotal role of surface brightness in determining
detectability of galaxies.

We also compared the resulted completeness distribution with the corresponding distri-
bution given by [14]. Comparison between the two completeness distributions revealed the
shifting of completeness contours toward fainter apparent magnitudes in our distribution.
Such a difference was expected, given the substantially higher depth of v2.0 compared to v0.5
HST/ACS data in southern GOODS field. We envisage that the improvised software would
be effective in estimating completeness and helpful in quantifying the biases in sampling of
the galaxy population.
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Abstract. In this paper, a combination of the braneworld scenario and covariant de
Rham-Gabadadze-Tolley (dRGT) massive Gravity theory is proposed. In this setup,
the five-dimensional bulk graviton is considered to be massive. The five dimensional
nonlinear ghost-free massive gravity theory affects the 3-brane dynamics and the grav-
itational potential on the brane. Following the solutions with spherical symmetry on
the brane, the full field equations together with the generalized Israel-Darmois junction
conditions on the brane and their weak field limits are presented in details. Generally,
the theory has four Stückelberg fields along with the components of physical metric. Al-
though analytical solutions of these equations are impossible in general, by considering
some simplifying assumptions, two classes of four-dimensional spherically symmetric
solutions on the brane with different background Stückelberg fields are obtained.

Keywords: Braneworld Gravity, Massive Gravity, Black Holes

1 Introduction

The accelerating expansion of the Universe has forced us to challenge with our understand-
ing of the fundamental physics [1, 2, 3]. In the last two decades, there has been considerable
interest in theories of gravitation that modify the Einstein’s gravity at very large distance
scales. These theories could explain the present day acceleration, without including a cos-
mological constant or an exotic matter content. Adding one or even many extra spatial
dimensions to the 4D Einstein’s theory of gravity may lead to the interesting phenomeno-
logical results. The Braneworld model is an extra dimensional theory, in which our universe
is a 3-brane embedded in a five-dimensional spacetime called the bulk [4, 5]. All matter
fields reside on the brane, but gravitons can travel into the extra dimension. The Dvali-
Gabadadze-Porrati (DGP) model [6] is an interesting braneworld model in which the bulk
is empty, the extra dimension is infinitely large. Also a 4D Einstein-Hilbert term in the
braneworld action exists. The model has attractive results from cosmological viewpoint
because gravity on the brane is weakened and becomes five-dimensional at large scales,
r � rc (where rc is the DGP crossover distance), while on small scales, gravity is effectively
bounded to the brane and 4D dynamics is regained. It contains a self-accelerating branch of
the solutions which can explain late time cosmic speed up [7, 8, 9]. From the 4D perspective,
gravity on the brane is mediated by an infinite number of Kaluza-Klein (KK) modes that
have not discontinuities. The 4D Einstein-Hilbert term on the brane will suppress the wave
functions of heavier KK modes, so that they do not participate in the gravitational inter-
actions on the brane at observable distances [10]. The 4D gravity on the brane is mediated
by a massless zero mode, whereas the couplings of the heavy KK modes to ordinary matter
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are suppressed.
Due to the cosmological constant problem, we should look for a technically natural way of
describing cosmic acceleration. The massive gravity theories are other kinds of modified
gravity theories, in which a small graviton mass may lead to an IR modification of gravity
with an accelerated expansion without a small cosmological constant. The recent experi-
ments GW150914 and GW151226 [11, 12] by LIGO, were able to detect the gravitational
waves and put an upper limit on the graviton mass, i.e. m < 1.2 × 10−22 eV [13]. At the
linearized level, the Fierz-Pauli (FP) graviton mass term is the only Lorentz-invariant mass
term which after quantization does not generate ghosts in flat space [14]. However, choosing
a Fierz-Pauli mass term for the graviton will lead to the well known vDVZ discontinuity
[15, 16]. The coupling of the longitudinal polarization of the massive graviton to trace of the
energy-momentum tensor in the limit of zero graviton mass is responsible for this disconti-
nuity, such that the tensor structure of the gravitational interaction deviates from that of
Einstein gravity. To restore the continuity of Fierz-Pauli massive gravity theory at graviton
mass m = 0, two different approaches have been proposed. The first one, which was first
pointed out by Vainshtein [17, 18], is to consider nonlinear effects. The other way is to con-
sider a curved maximally symmetric spacetime (dS or AdS) with m

H → 0 [19, 20]. In 1972,
Vainshtein noted that there is a radius rV , known as Vainshtein radius, around a massive
source, inside of it the linear approximation breaks down and at massless limit rV goes to
infinity [17]. Therefore, the nonlinear terms are important in the limit m → 0. However,
Boulware and Deser argued that the non-linear terms cause a scalar field with wrong sign
kinetic term, known as Boulware-Deser (BD) ghost [21]. At the classical level, this scalar
may not be a problem due to non-linear effects [17, 18], but at the quantum level the theory
becomes strongly coupled [22] at energy scale Λ5 ≡ (m4MP )1/5. By adding higher order
operators, this scale can be raised to order Λ3 ≡ (m2MP )1/3.

In 2010, de Rham and Gabadadze studied generic extensions of the Fierz-Pauli La-
grangian by higher-order interactions of the massive spin-2 fluctuation hµν [23]. Their
analysis went to quintic order in the longitudinal component of hµν and demonstrated that
its interactions could in fact be made ghost-free in a decoupling limit. The decoupling
limit analysis relies heavily on the aforementioned Goldstone boson analogously suggested
by Arkani-Hamed, Georgi and Schwartz [22]. de Rham, Gabadadze and Tolley (dRGT) [24]
completed their investigations by presenting a nonlinear theory of massive gravity whose
decoupling limit is ghost-free for all nonlinear self-interactions of the longitudinal compo-
nent [24, 25, 26, 27]. The dRGT theory is the unique ghost-free theory for massive graviton
and new kinetic interactions are not consistent [28, 29]. See [30, 31, 32] for recent reviews
on all aspects of massive gravity and bimetric theories. In the context of the dRGT non-
linear covariant massive gravity model [23, 24], some self-accelerating solutions have been
discovered [33, 34, 35, 36, 37, 38]. Dynamics of the scalar mode of a massive graviton in
four-dimensions has been studied in detail in [36], showing that a non-trivial configuration
for this field leads to self-acceleration. Scalar fluctuations around these self-accelerating
configurations are proved to be free of ghosts.

It is worthwhile to note that one way in which a massive graviton naturally arises is
higher dimensional scenarios. A theory of gravity with compactified extra dimensions can
be viewed as a four dimensional theory of multiple gravitons, i.e. KK modes. An alternative
to the KK paradigm was the ADD model [39, 40] in which one (or more) extra dimension
could emerge from a theory of a finite number of massive gauge fields or gravitons living
in four dimensions. Their idea, named “Dimensional Deconstruction”, can be viewed as
taking a five dimensional gauge or gravity theory and discretizing the extra dimension(s).
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It has been shown that Dimensional Deconstruction is equivalent to a truncation of the KK
tower at the nonlinear level [28]. It has been shown that the DGP model is closely related
to massive gravity. In this model, the 4D graviton propagator on the brane in the Gaus-
sian normal coordinates is similar to the propagator for 4D massive gravity with graviton
mass m2 = ( 1

rc
)
√
−�, where rc ≡ (M2

p/2M
3
5 ) is the DGP crossover length scale and � is

the four-dimensional d’Alembertian. In other words, the graviton acquires a soft mass, or
resonance effectively, in the DGP model. The induced gravity term in the brane action acts
as a kinetic term for a 4D graviton while the bulk Einstein-Hilbert term acts as a gauge
invariant mass term. Therefore, the vDVZ discontinuity problem is also present in the DGP
model. Here, the massless limit converts to the limit rc →∞. As argued by Vainshtein, at
distances smaller than the radius rV , the linearization breaks down and by considering non-
linear effects, we can restore the predictions of GR on the brane [17, 18, 41, 42]. However,
the DGP model has some consistency problems. The normal branch of the DGP theory
is free of ghosts and instabilities, but the self-accelerating branch is completely unstable
[43, 44, 45]. The DGP model has strong interactions at energy scale Λ ∼ (Mp/r

2
c )

1/3. From
the 4D point of view, there is an extra scalar degree of freedom π that contributes to the
extrinsic curvature of the brane as Kµν ∝ ∂µ∂νπ [43, 44]. Indeed, this scalar is a brane
bending mode that interacts strongly at momenta of order Λ. In the decoupling limit of
the DGP model, in which Λ is kept fixed, only the π sector exists and all other degrees of
freedom decouple. This limit reduces to the cubic Galileon for the helicity-0 mode π [46].

The works done by Gabadadze and de Rham before proposing the interesting dRGT the-
ory have shown that the introduction of the spurious extra dimension provides a geometrical
interpretation of massive gravity, for which non-linearities can be tracked down explicitly
[47, 48]. By studying massive gravity from extra dimensional point of view, we can better
understand certain aspects of the dRGT theory [23, 24] and its bigravity [49] and multi-
gravity [50] extensions. In 2009, Gabadadze considered an extension of GR by an auxiliary
non-dynamical extra dimension and showed that the obtained gravitational equations could
have a self-accelerated solution, which is due to a new mass parameter m. The auxiliary
dimension gives an extrinsic curvature to the 4D space-time and the extrinsic curvature is
responsible for creating the mass term. The special structure [K]2 − [K2] arose from the
Gauss equation for the bulk Ricci scalar ensures the Fierz-Pauli structure which is ghost-
free at the linearized level [47]. de Rham and Gabadadze [48, 51] verified that the theory in
the decoupling limit is free of the Boulware-Deser ghost to cubic order. In ref [28], it was
shown that the ghost-free models of massive gravity and their multi-graviton extensions can
follow from considering higher dimensional extension of GR in the Einstein-Cartan form on
a discrete extra dimension. Indeed, discretizing the extra dimension in the vielbein language
can automatically generate the square root structure characteristic of the dRGT model, i.e.
Kνµ, [28]. Indeed, the expression for the discretized extrinsic curvature coincides with Kνµ.

By considering the above arguments, now giving a mass to the graviton in Higher-
dimensional theories and exploring the overall effects of massive gravity and extra dimension
could be interesting from theoretical and phenomenological viewpoints. The final results may
have some relations with the multi-metric theories and then lead to physically interesting
predictions. In 2004, Chacko et al., considered a braneworld setup in warped anti-de Sitter
spacetime (Randall-Sundrum (RS) two-brane model [52]) with a mass term for the graviton
on the infrared brane [53]. The predictions of this theory coincide with the results of GR at
distances smaller than the infrared scale but at longer distances a theory of massive gravity
exists. However, in the low energy limit of the theory, there is a ghost, which corresponds
to the radion field. In Ref. [54], both of the bulk and the brane mass terms were introduced
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in the action of the RS two-brane model to quadratic order to modify the profile of the
graviton zero-mode in the extra dimensions. It was found that for a particular choice of
parameters, there is an IR-peaked zero-mode, i.e. the graviton can be localized on the IR
brane. In 2014, a braneworld scenario has been investigated in which the infinite-volume
bulk graviton was massive [55]. The bulk graviton can be as heavy as the bulk Planck scale
which is much larger than the inverse Hubble size. The 4D induced gravity term on the
brane shields the brane matter from both strong bulk gravity and large bulk graviton mass.
Higher-dimensional gravity at large distances are not obtained on the brane in this setup
and at distances above the bulk Planck length scale, the 4D graviton on the brane acquires
a small mass. The author of [55] considered a mass potential that arose via the gravitational
Higgs mechanism, such that a general quadratic potential in terms of perturbation tensor
hAB was introduced in the bulk action. In this extension of the DGP model, even for the
case of ghost-free Fierz-Pauli bulk mass term, the 4D tensor structure on a 3-brane could be
obtained [55]. Here, the key point is that the trace h ≡ ηABhAB is perturbatively a ghost.
However, it was shown that the non-perturbative Hamiltonian is bounded from below and
there is no ghost in full nonlinear theory [56, 57, 58].

With these detailed preliminaries which are necessary for a reader to understand forth-
coming arguments in this paper, we consider a combination of the DGP braneworld and
dRGT massive gravity models, by introducing a five dimensional nonlinear ghost-free po-
tential in the bulk action. In this setup, our universe is a 3-brane embedded in a 5D bulk
where the extra spatial dimension is large. A 5D ghost-free massive gravity theory propa-
gates nine degrees of freedom (DOF) and the extra four DOFs added to the five DOFs of
5D massless graviton, which is effectively equivalent to a 4D softly massive graviton, are
the extra polarizations of the 5D massive graviton. We considered the induced gravity term
on the brane action, because this term in the DGP setup acts as a kinetic term for the 4D
graviton. The 5D extension of dRGT theory is free of ghosts and we want to explore the
effects of this nonlinear theory on the brane dynamics and the effective 4D gravitational
interactions on the brane. For this purpose, the full 5D field equations and their weak field
limits have been studied. Our focus is on the solutions with spherical symmetry on the
brane. The full nonlinear equations of motion in the presence of the unknown stückelberg
fields are generally very complicated to solve for analytical solutions, unless we consider
some simplifying assumptions. So, to have some intuition and to be more clarified, we have
adopted step by step some reasonable and simplifying assumptions to find a class of four-
dimensional spherically symmetric solutions on the brane. We considered two simplified
linear theories in both unitary and non-unitary gauges and found in both cases a flat so-
lution on the brane with different background Stückelberg fields. In non-unitary gauge we
restricted ourself to special choices of the free parameters of the theory. We note that general
massive braneworld solutions, resulting from the full nonlinear theory, should reduce to the
massless braneworld solution in the limit of zero bulk graviton mass as has been studied
in [59]. We are attempting to follow new approaches, such as solving the nonlinear field
equations numerically or finding the effective 4D field equations on the brane [60, 61], to
examine the Vainshtein mechanism in our model.

2 Braneworld Massive Gravity

In braneworld scenarios, we assume that our (1+3)-dimensional spacetime is a domain wall
embedded in a five-dimensional spacetime called the bulk [4, 5]. All matter fields live on the
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brane but only gravitons can travel into the bulk. In the DGP braneworld model, the bulk
is empty, the extra dimension is infinitely large and a 4D Einstein-Hilbert term exists on the
brane action [6]. In our braneworld massive gravity model, we introduce a mass potential
to the bulk action, which is a 5D extension of the dRGT’s 4D nonlinear ghost-free massive
gravity theory [23, 24]. We consider a 3-brane Σ embedded in the five-dimensional massive
bulk M. The total action is

S =
M3

5

2

∫
M
d5X
√
−g
((5)

R+m2
g U(g,K)

)
+ Sbrane, (1)

where Sbrane is the 3-brane action defined as

Sbrane =
M2
p

2

∫
Σ

d4x
√
−q (4)R+

∫
Σ

d4x
√
−qLmatt4 +

∫
Σ

d4x
√
−q K

κ2
5

. (2)

gAB is the 5D bulk metric with corresponding Ricci tensor given by (5)RAB . XA, A =
0, 1, 2, 3, 5 are the coordinates in the bulk. The brane has induced metric qµν with corre-
sponding Ricci tensor (4)Rµν . Lmatt4 is the matter Lagrangian localized on the brane. We
note also that the bulk Planck mass M5 and the 4-dimensional Planck scale Mp are defined
as κ2

5 = 8πG(5) = M−3
5 and κ2

4 = 8πG(4) = M−2
p . U is a dimensionless “potential” for the

metric gAB that makes bulk graviton massive, where the dimension-full parameter mg sets
the graviton mass scale. This potential depends on three dimensionless arbitrary parameters
α3, α4 and α5 and is composed of four parts,

U(g,K) =
5∑

n=2

αnUn(K) = U2 + α3 U3 + α4 U4 + α5 U5, (3)

where α2 = 1. The tensor KBA is

KBA = δBA −
√
gBC(gCA −HCA) = δBA −

√
gBC fab∂Cφ

a∂Aφb. (4)

The potential (3) is unique and no further polynomial terms can be added to the action
without introducing the BD ghost [23, 24, 25, 26, 27]. The sum is finite and stops at n = 5,
since the total derivative combinations vanish for n > D = 5 [24, 31]. It was shown that
this is the most general potential for a ghost-free theory of massive gravity [62]. fab is the
fiducial (or reference) metric, which we assume to be the Minkowski metric, ηµν , and φa

are the Stückelberg scalar fields introduced to give a manifestly diffeomorphism invariant
description [22]. Under a diffeomorphism δXA = ξA(X), the Stückelberg fields φ0, φi

(i = 1, 2, 3, 5) transform as simple scalars. The tensor hAB represents the fluctuations of
bulk metric about Minkowski reference metric, hAB = gAB − ηAB , and HAB corresponds to
the covariantization of metric perturbations, defined as HAB = gAB − ∂Aφa∂Bφbηab. The

square root is formally understood as
√
W

A

C

√
W

C

B = WA
B . The four polynomial terms U2,

U3, U4, and U5 depend on the metric g and Stückelberg fields φa as

U2 = [K]2 − [K2], (5)

U3 =
1

3
[K]3 − [K2][K] +

2

3
[K3], (6)

U4 =
1

12
[K]4 − 1

2
[K2][K]2 +

2

3
[K3][K] +

1

4
[K2]2 − 1

2
[K4], (7)
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U5 =
1

60
[K]5 − 1

3
[K3][K2] +

1

3
[K3][K]2 − 1

6
[K2][K]3 − 1

2
[K][K4] +

1

4
[K][K2]2 +

2

5
[K5], (8)

where the square brackets are defined as

[K] ≡ trKBA , [K]2 ≡
(
trKBA

)2
, [K2] ≡ trKBCKCA . (9)

We chose a coordinate y for the extra dimension so that our 3-brane is localized at y = 0.
Variation of the action (1) with respect to the bulk metric leads to the modified 5D field
equations in the bulk as [56, 57, 58]

(5)GAB +m2
gXAB = κ2

5
(loc)TABδ(y), (10)

where XAB is the effective energy-momentum tensor due to the graviton mass and expressed
as

XAB = XAB + σYAB , (11)

with

XAB = −1

2
(αU2 + β U3)gAB + X̃AB , (12)

X̃AB = KAB − [K]gAB − α
{
K2
AB − [K]KAB

}
+ β

{
K3
AB − [K]K2

AB +
U2

2
KAB

}
, (13)

YAB = −U4

2
gAB + ỸAB , (14)

ỸAB =
U3

2
KAB −

U2

2
K2
AB + [K]K3

AB −K4
AB . (15)

The new parameters α, β, and σ are defined as α = 1 + α3, β = α3 + α4, σ = α4 + α5,
and the indices are raised and lowered by the “physical” metric gAB , so that KAB = gACKCB ,
K2
AB = gADKDCKCB , etc.

The effective localized energy-momentum tensor on the brane including the contribution
from the induced 4D Einstein-Hilbert term on the brane is

(loc)TAB = gµAg
ν
B(− 1

κ2
4

)

√
−q
−g

((4)

Gµν − κ2
4

(4)Tµν

)
. (16)

where (5)GAB and (4)GAB denote the Einstein tensors constructed from the bulk and the
brane metrics respectively. The tensor qAB = gAB − nAnB is the induced metric on the
brane Σ with nA the normal vector on this hypersurface. The field equations in the bulk
(y 6= 0) take the following form

(5)GAB =(5)RAB −
1

2
(5)RgAB = −m2

g X̃AB . (17)

Moreover, if the components of X̃AB be continuous across y = 0, the following modified
(due to the presence of induced gravity on the brane) Israel-Darmois junction conditions, as
a boundary condition for the field equations in the bulk, would be obtained

[Kν
µ]− δνµ[K] = −κ2

5
(loc)T νµ =

(κ2
5

κ2
4

)(4)

Gνµ − κ2
5

(4)T νµ , (18)
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where Kµν = 1
2∂y(gµν) is the extrinsic curvature of the brane and brackets denote jump

across the brane (y = 0). We assume a Z2-symmetry on reflection around the brane, thus
the Israel-Darmois junction conditions become

K
ν

µ −Kδ νµ = rc
(4)Gνµ −

κ2
5

2
(4)T νµ , (19)

where rc =
κ2
5

2κ2
4

=
M2
p

2M3
5

is the well-known DGP crossover distance, and by definition

K
ν

µ = K ν
µ (y = 0+) = −K ν

µ (y = 0−).

After presentation of general field equations in the proposed setup, now we seek for some
spherically symmetric solutions on the brane.

3 Spherically Symmetric Solutions

Here, we consider the static spherically symmetric configurations on the brane and our con-
centration is on the issue of braneworld black holes, i.e. finding the bulk and the brane metric
when a spherically symmetric energy-momentum distribution is localized on the brane. In
our previous work [59], black hole solutions in warped DGP braneworld model with a cos-
mological constant term in the bulk were obtained (see [63, 64, 65, 66] for further black
hole solutions in braneworld scenarios). We found a 5D black string solution for the bulk
metric, which reduces to 4D Schwarzschild-AdS solution on the brane. The 4D AdS cur-
vature radius is proportional to rc, therefore the Schwarzschild solution is recovered on the
brane in the limit rc → ∞ [59]. As we already noted, the DGP model is closely related to
massive gravity and the 4D graviton propagator on the brane is similar to the propagator
for 4D massive graviton. In the dRGT theory with a Minkowski reference metric, a class of
non-bidiagonal Schwarzschild-dS solutions was found in [33, 34]. In this theory, for a special
choice of free parameters of the action, the Schwarzschild-dS type of black hole solutions was
obtained in ref [67, 35], where the mass term behaves similar to the cosmological constant
term in GR. For this choice of parameters, the Bianchi identity is automatically satisfied
for a certain diagonal and time-independent metrics in spherical polar coordinates, whereas
the kinetic terms for both the vector and scalar fluctuations vanish in the decoupling limit.
Although it was shown that the linearized solutions of GR can be reproduced below the
Vainshtein radius in a certain region of parameter space, the metric here is accompanied by
nontrivial backgrounds for the Stückelberg fields. The vector and scalar modes Aµ and π
of massive gravitons are the nonunitary parts of the background Stückelberg fields [35], i.e.
xµ − φµ = (mAµ + ∂µπ)/Λ3. For reviewing the black hole solutions in massive gravity see
refs. [68, 69, 70, 71].

All of these papers have focused only on the four-dimensional dRGT theory [23, 24],
in which only the usual graviton terms, Ui (i = 2 − 4), are considered. For spherically
symmetric solutions in extra dimensional setups, some types of black hole solutions for
dRGT massive gravity with their thermodynamical properties have been investigated in
d-dimensional spacetimes (d ≥ 3) in refs. [72, 73, 74, 75, 76, 62]. The behavior of mas-
sive graviton terms for some cosmological solutions such as the FLRW, Bianchi type I, and
also Schwarzschild-Tangherlini-(A)dS metrics in a specific five-dimensional nonlinear mas-
sive gravity and bigravity models have been clarified in Refs. [62, 77]. In ref. [78], it
was argued that giving a space-dependent mass to the 5D graviton, which depends on the
extra-dimensional coordinate, can localize Einstein gravity on a 3-brane embedded in a 5D
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Minkowski space. They focused on the quadratic Fierz-Pauli Lagrangian for 5D metric per-
turbations and explored the linearized equations of motion for 4D scalar, vector and tensor
modes. They showed that there is no ghost on the brane and conserved matter on the brane
does not couple to the scalar massless mode. The nonlinear extension of the theory has not
been studied yet.

We want to find a 4D spherically symmetric solution for our nonlinear massive braneworld
setup and separately determine the effects of bulk graviton mass term and also the large extra
dimension on the gravitational interactions on the brane. We expect that the predictions of
GR and DGP model be reproduced in appropriate limits, i.e. m → 0 limit for recovering
the DGP results and rc →∞ limit in addition to the previous one for recovering GR on the
brane. The issues of the vDVZ discontinuity and the Vainshtein mechanism to resolve it
should be carefully studied. The effects of bulk nonlinear terms and the brane bending modes
play important roles in these limits. To obtain black hole solutions in a braneworld scenario,
generally there are two different approaches. In the first approach, as we explained in last
section, dynamics and geometry of the whole bulk spacetime are primarily considered; then
the dynamics on the brane is extracted by using the Israel-Darmois matching conditions.
The second approach is to obtain the effective four-dimensional field equations on the brane
firstly and then try to extend these solutions into the bulk [60, 61]. Here, we will follow
the first approach. Therefore, to choose an appropriate 5D line element which is spherically
symmetric on the brane, we review the 4D black hole solutions of the original dRGT theory.
In this case, the ansatz for the static spherically symmetric solutions is the same as in GR.
The only subtlety consists in getting the correct configuration for the four scalar fields.
Regarding the vacuum solution of the theory, (φa = xµ δaµ and gµν = ηµν), the spherically
symmetric line element and the four scalar fields for 4D massive gravity models can be
written as follows

ds2 = −α(r)dt2 + 2δ(r)dtdr + β(r)dr2 + χ(r)
(
dθ2 + sin2(θ)dϕ2

)
, (20)

φ0 = t+ h(r), φi = φ(r)
xi

r
. (21)

In the unitary gauge, the scalar fields are φa = xa = (t, r sin θ cosφ, r sin θ sinφ, r cos θ).
Therefore, in this gauge h(r) = 0 and φ(r) = r. The field configuration is invariant under
two residual coordinate transformations. The first one is an arbitrary change of the radial
coordinate r → r̃ = r̃(r), which allows to set either χ(r) = r2 or φ(r) = r. The second
one is the redefinition of the time variable t → t̃ = t + τ(r), which allows to cancel either
δ(r) or h(r). In our five dimensional braneworld theory, we can choose a coordinate system
in which the brane is located at y = 0 and the 5D metric with spherical symmetry on the
brane are as follows

ds5
2 = −eν(r,y)dt2 + eλ(r,y)dr2 + r2eµ(r,y)dΩ2 + dy2 , (22)

where the 5D Stückelberg fields are

φ0 = t, φi = φ(r)
xi

r
, φ5 = y. (23)

As compared to ordinary Braneworld theories, this configuration contains an additional
radial function φ(r), which should be determined. The matter content of the 3-brane universe
is considered to be a localized spherically symmetric untilted perfect fluid (e.g. a star) with

(4)Tµν = (ρ+ p)uµuν + pqµν , (24)
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where uµ stands for the 4-velocity of the fluid and ρ = p = 0 for r > R. Nevertheless, since
we want to obtain static black hole solutions outside the star (that is, for r > R), in these
regions the brane is empty. With the ansatz (22) and (23), the components of KBA would
take the following form

KBA = diag

(
1− (e−

ν
2 ), 1− (φ′e−

λ
2 ), 1− (

φ

r
e−

λ
2 ), 1− (

φ

r
e−

λ
2 ), 0

)
. (25)

By using these components, we can obtain the total derivative combinations U2, U3, U4 and
U5. We have found that the term U5 vanishes for this configuration. Consequently, the
components of XAB can be obtained analytically although their expressions are so lengthy.
The Einstein tensor components are nonlinear and second order in terms of ν, λ, µ and
their partial derivatives. To find some analytical solutions, firstly we consider the weak-field
regime (i.e. far enough from the source localized on the brane). In this respect, we will
find solutions in the regimes where |ν|, |λ| and |µ| are small quantities compared to unity;
that is, |ν|, |λ|, |µ| � 1. By adopting this assumption, we linearize our field equations with
respect to these functions. Now, by putting the metric (22) into the bulk field equations
(17) and keeping only the leading-order terms, we obtain the (tt), (rr), (θθ), (yy), and
(ry) components of the bulk field equations respectively as follows:

2(µ− λ) + 2r2µrr + 6rµr − 2rλr + r2(λyy + 2µyy)

+2m2
gr

2

{[
3 + 3α+ β − (1 + 2α+ β)(φ′ + 2

φ

r
) + (α+ β)(

φ2

r2
+ 2

φφ′

r
)− βφ

′φ2

r2

]
(1 + ν)

+

[
(1+2α+β)

φ′

2
−(α+β)

φφ′

r
+β

φ′φ2

2r2

]
λ+

[
(1+2α+β)

φ

r
−(α+β)(

φφ′

r
+
φ2

r2
)+β

φ′φ2

r2

]
µ

}
= 0 ,

(26)

2(λ− µ)− 2rµr − 2rνr − r2(νyy + 2µyy) + 2m2
gr

2

{[
− (α+ 2) + 2(α+ 1)

φ

r
− αφ

2

r2

]
(1 + λ)

+

[
− 1

2
(1 + 2α+ β) + (α+ β)

φ

r
− 1

2
β
φ2

r2

]
ν +

[
− (α+ 1)

φ

r
+ α

φ2

r2

]
µ

}
= 0 , (27)

−r2(νrr+µrr)−rνr−2rµr+rλr−r(νyy+λyy+µyy)+2m2
gr

2

{
−(α+2)+(α+1)(

φ

r
+φ′)−αφφ

′

r

+

[
− 1

2
(1 + 2α+ β) +

1

2
(α+ β)(

φ

r
+ φ′)− 1

2
β
φφ′

r

]
ν +

[
− 1

2
(1 + α)φ′ +

1

2
α
φφ′

r

]
λ

+

[
−2−α+3β−3σ+(1+α−5β+11σ)

φ

2r
+(1+α−β+σ)φ′+(−α+β−3σ)

φφ′

2r
−5

2
σ
φ2

r2
+

1

2
σ
φ′φ2

r2

]
µ

}
= 0 ,

(28)

2(λ−µ)−2r2µrr−r2νrr+2r(λr−3µr−νr)+2m2
gr

2

{
−(3+3α+β)+(1+2α+β)(φ′+2

φ

r
)−(α+β)(

φ2

r2
+2

φ′φ

r
)



140 Amir Asaiyan et al.

+β
φ′φ2

r2
+

[
− 1

2
(1+3α+3β+σ)+

1

2
(α+2β+σ)(φ′+2

φ

r
)−(σ+β)(

φφ′

r
+
φ2

2r2
)+

1

2
σ
φ′φ2

r2

]
ν

+

[
−1

2
(1+2α+β)φ′+(α+β)

φφ′

r
−1

2
β
φ′φ2

r2

]
λ+

[
−(1+2α+β)

φ

r
+(α+β)(

φ′φ

r
+
φ2

r2
)−βφ

′φ2

r2

]
µ

}
= 0 ,

(29)

(λ− µ) = rµr +
1

2
rνr + f(r) , (30)

where f(r) is an arbitrary function of r. The subscripts y and r in these relations represent
partial differentiation with respect to y and r respectively. Prime in φ′ denotes derivative
with respect to r. In addition to the generalized field equations (17), the Bianchi identities
lead to the constraint:

m2
g ∇AXAB

)
= 0 , (31)

where ∇A denotes the covariant derivative with respect to physical metric gAB . In the cases
mg 6= 0, the linearized form of these constraints for B = 1 and B = 4 are respectively as
follows

2α(
φ2

r2
−φφ

′

r
)+2(1+α)(φ′−φ

r
)+

[
−1

2
(1+2α+β)+(α+β)

φ

r
−1

2
β
φ2

r2

]
rνr+

[
−(α+1)

φ

r
+α

φ2

r2

]
rµr

+

[
(α+ β)(φ′ − φ

r
) + β(

φ2

r2
− φφ′

r
)

]
ν +

[
(α+ 1)(

φ

r
− φ′) + 2α(

φφ′

r
− φ2

r2
)

]
µ = 0 , (32)

∂

∂y
(X44) =

[
− 1

2
(1+3α+3β+σ)+

1

2
(α+2β+σ)(φ′+2

φ

r
)−(σ+β)(

φφ′

r
+
φ2

2r2
)+

1

2
σ
φ′φ2

r2

]
νy

+

[
−1

2
(1+2α+β)φ′+(α+β)

φφ′

r
−1

2
β
φ′φ2

r2

]
λy+

[
−(1+2α+β)

φ

r
+(α+β)(

φ′φ

r
+
φ2

r2
)−βφ

′φ2

r2

]
µy = 0 ,

(33)
where other components of the constraint (31) are satisfied automatically. Contrary to the
easy DGP model, which we studied in our previous paper [59], the presence of graviton mass
terms in the 5D field equations (26)-(30) makes it more difficult to find an exact solution.
The linearised form of the Israel-Darmois matching conditions (19) will lead to the following
boundary conditions (on the brane) for the filed equations in the bulk

−1

2

(
2µy + λy

)
|y=0+ = rc

[
− 1

r2

(
µ− λ+ 3rµr + r2µrr − rλr

)]
, (34)

−1

2

(
2µy + νy

)
|y=0+ = rc

[
− 1

r2

(
µ− λ+ rµr + rνr

)]
, (35)

−1

2

(
νy + λy + µy

)
|y=0+ = rc

[
− 1

2r

(
rνrr + rµrr + 2µr + νr − λr

)]
. (36)

Note that these equations are hold on the brane outside our spherical object, where ρ and
p are zero. Solving the linearized bulk field equations (26)-(30) with constraints (32) and
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(33) (resulting from the Bianchi identities), is a very difficult task in non-unitary gauges.
Therefore, here we consider some additional simplifying assumptions for the theory. The
first assumption is that we find solutions in the unitary gauge, i.e. φ(r) = r. In this gauge,
the linearized form of all the higher order combinations, U2, U3 and U4 vanish such that

XAB = KAB − [K]gAB = diag (
1

2
λ+ µ),−(

1

2
ν + µ),−1

2
r2(ν + λ+ µ),

−1

2
r2 sin2(θ)(ν + λ+ µ),−1

2
(ν + λ+ 2µ)

)
. (37)

Therefore, in the unitary gauge, the free parameters of the theory are absent in the field
equations and effectively the Fierz-Pauli mass term is rebuilt. In this situation, the equations
that should be solved are simplified to the following system of partial differential equations

2(µ− λ) + 2r2µrr + 6rµr − 2rλr + r2(λyy + 2µyy) +m2
gr

2(λ+ 2µ)) = 0 , (38)

2(λ− µ)− 2rµr − 2rνr − r2(νyy + 2µyy)−m2
gr

2(ν + 2µ) = 0 , (39)

−r2(νrr + µrr)− rνr − 2rµr + rλr − r(νyy + λyy + µyy)−m2
gr

2(ν + λ+ µ) = 0 , (40)

2(λ− µ)− 2r2µrr − r2νrr + 2r(λr − 3µr − νr)−m2
gr

2(ν + λ+ 2µ) = 0 , (41)

(λ− µ) = rµr +
1

2
rνr + f(r) , (42)

where f(r) is an arbitrary function. The constraint equations (32) and (33) in the unitary
gauge are represented by the following equations

νr + 2µr = 0, (43)

νy + λy + 2µy = 0. (44)

The Israel-Darmois junction conditions on the brane are independent of the gauge and are
the same as before, that is, Eqs. (34)-(36). The three free parameters of the theory α, β and
σ do not exist in the unitary gauge. The general solution of the bulk field equations with
the mentioned assumptions that satisfies the constraint equations are obtained as follows

λ = µ = a cos(mgy) + b sin(mgy), (45)

ν = −3µ = −3

(
a cos(mgy) + b sin(mgy)

)
, (46)

where a and b are integration constants. By putting these solutions into the Israel-Darmois
junction conditions, we see that b should be zero. Therefore, the linearized theory in the
unitary gauge leads to the following line element on the brane

ds4
2 = −(1− 3a)dt2 + (1 + a)dr2 + r2(1 + a)dΩ2 . (47)

Actually, this solution after the coordinates redefinition (t, r)→ (t′, r′), where t′ = (
√

1− 3a) t
and r′ = (

√
1 + a) r, reduces to the 4D flat Minkowski metric. But, this coordinates trans-

formation leads to the appearance of the temporal component of the Stückelberg fields as

φ0 = (1− η)t′, η = 1− 1√
1− 3a

, (48)
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and the scalar mode of massive graviton resulting from this Stückelberg field is π = 1
2ηΛ3t′2.

The final result is a flat 3-brane solution which is accompanied by the obtained scalar mode.

For the second simplifying assumption, we decided to work in non-unitary gauges. In
this case, the free parameters of the theory (α, β, σ) play important roles in characterizing
the properties of the solution, such as the (A)dS curvature scale. Moreover, the unknown
scalar field φ(r) is coupled nonlinearly with other unknown metric components which can
make the field equations more difficult to solve. We should determine a consistent scalar field
φ(r) together with other unknown functions from field equations. Here, we consider three
additional simplifying assumptions. The first one is to assume that the functional µ(r, y) be
just a function of the extra dimension y, which in the non-unitary gauge (φ(r) 6= r) it could
be a reasonable assumption. In this situation, solving the field equations could be slightly
more easier. Moreover, we can restrict ourself to specific choices of the free parameters. The
second assumption is to consider the case α = β = σ = 0, which is equivalent to the choices
α3 = −α4 = α5 = −1. By this assumption, the effective energy-momentum tensor XAB

takes the Fierz-Pauli structure, i.e. XAB = KAB − [K]gAB . However, the expression of it’s
components are not the same as eq. (37), which resulted in the unitary gauge. For this
special choices of the free parameters, the components of XAB takes the following form

X00 = 3− φ′ − 2
φ

r
+ (3− φ′ − 2

φ

r
)ν +

1

2
φ′λ+

φ

r
µ , (49)

X11 = −2 + 2
φ

r
− 1

2
ν − φ

r
µ+ (−2 + 2

φ

r
)λ , (50)

X22 = r2
(
− 2 +

φ

r
+ φ′ − 1

2
ν − 1

2
φ′λ+ (−2 +

φ

2r
+ φ′)µ

)
, (51)

X33 = sin2(θ)X22 , (52)

X55 = −3 + 2
φ

r
+ φ′ − 1

2
ν − 1

2
φ′λ− φ

r
µ , (53)

where reduce to (37) for φ(r) = r. The constraint equations (32) and (33) for these special
choices of the parameters are

2(φ′ − φ

r
)− 1

2
rνr − φµr + (

φ

r
− φ′)µ = 0 , (54)

νy + φ′λy + 2
φ

r
µy = 0. (55)

The scalar field φ(r) is yet stayed coupled with other fields which this makes finding the
solutions of the field equations difficult. The third assumption we do is to linearize the field
equations with respect to the scalar field by considering φ(r)� 1 and ignoring the nonlinear
terms in the above equations. Therefore, by imposing these three assumptions we reach to
the following field equations that should be solved analytically

2(µ− λ)− 2rλr + r2(λyy + 2µyy) + 2m2
gr

2(3− φ′ − 2
φ

r
+ 3ν) = 0 , (56)

2(λ− µ)− 2rνr − r2(νyy + 2µyy) + 2m2
gr

2(−2 + 2
φ

r
− 1

2
ν − 2λ) = 0 , (57)

−r2νrr + r(λr − νr)− r2(νyy + λyy + µyy) + 2m2
gr

2(−2 +
φ

r
+ φ′ − 1

2
ν − 2µ) = 0 , (58)
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2(λ− µ)− r2νrr + 2r(λr − νr) + 2m2
gr

2(−3 + φ′ + 2
φ

r
− 1

2
ν) = 0 , (59)

(λ− µ) =
1

2
rνr + f(r) , (60)

2(φ′ − φ

r
)− 1

2
rνr = 0 , (61)

νy = 0. (62)

These equations are valid in the regions where ν, µ, λ and φ are very small. We obtained
the following solutions for these linearized field equations

ν(r, y) = a,

λ(r, y) = µ(r, y) =
3

4
a,

φ(r) = (1 + a)r, (63)

where a is an integration constant. Note that these solutions are valid in the regions where

the obtained φ(r) is very small, i.e r �
(

1
1+a

)
. However, the metric here is accompanied by

a nontrivial spatial backgrounds for the Stückelberg fields, πi = xi−φi = −axi, (i = 1, 2, 3),
where xi = (r sin θ cosφ, r sin θ sinφ, r cos θ). The corresponding 4D line element on the
3-brane is given by

ds4
2 = −(1 + a)dt2 + (1 +

3

4
a)dr2 + r2(1 +

3

4
a)dΩ2 . (64)

However, in this case the solution on the brane transforms also to the 4D flat Minkowski
metric, after the coordinates redefinition (t, r) → (t′, r′) with t′ =

√
1 + a t and r′ =√

1 + 3
4a r. Due to this coordinates transformation, the temporal and spatial components

of the Stückelberg fields will take the following forms

φ′0 =
1√

1 + a
t′, (65)

φ′i =
1 + a√
1 + 3

4a
x′i. (66)

Finaly, the scalar mode of massive graviton resulting from these Stückelberg fields is

π =
Λ3

2
(δ t′2 + γ x′2), (67)

where the constants δ and γ are related to a via δ = 1− 1√
1+a

and γ = 1− 1+a√
1+ 3

4a
.

In this paper, we considered two simplified linear theories in both unitary and non-unitary
gauges and found in both cases a flat solution on the brane with different background
Stückelberg fields (after a coordinates redefinition). In non-unitary gauge, we restricted
ourself to special choices of the free parameters of the theory. Finding a general analytical
solution for the linear theory with arbitrary α, β and σ together with the unknown scalar
field φ(r) and then screening the solution on the brane to be consistent with junction condi-
tions is a very difficult and complicated procedure. However, in the regions where we should
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keep nonlinear terms in the field equations, solving them will be more intricate. In this sit-
uation, we can pursue alternative approaches, such as solving the equations numerically or
finding the effective 4D field equations on the brane for the new braneworld massive gravity
theory and then solving them analytically [60, 61]. We are working on these subjects and
the outcomes after completion will be presented in another paper.

4 Summary

We know that a way in which a massive graviton can naturally arise is from higher di-
mensional scenarios, such as KK, ADD and DGP theories. It has been shown that there
is a deep connection between the DGP braneworld gravity and massive gravity theories.
The graviton in the DGP setup acquires effectively a soft mass and the induced gravity
term in the brane action acts as a kinetic term for a 4D graviton, while the bulk Einstein-
Hilbert term acts as a gauge invariant mass term. Studying massive gravity from extra
dimensional point of view can be useful for better understanding of certain aspects of the
dRGT massive gravity theory and its bigravity and multi-gravity extensions. This fact was
the original motivation of this paper to construct an extension of massive gravity in the
spirit of braneworld scenarios. We have constructed a combination of the braneworld sce-
nario and covariant de Rham-Gabadadze-Tolley (dRGT) massive Gravity, where we suppose
that the five-dimensional bulk graviton is massive. We considered a static 5D configuration
with spherical symmetry on the brane, aimed at separately determining the effects of bulk
graviton mass term and also the large extra dimension on the gravitational interactions on
the brane. Then, by a detailed analytical treatment, the effects of the nonlinear ghost-free
massive gravity on brane dynamics and effective gravitational potential on the brane are
examined. In this manner, the full field equations and their weak field limits together with
the generalized Israel-Darmois junction conditions on the brane are presented. This set of
equations are so complicated to be solved analytically without some simplifying assumptions.
For this reason, by adopting some simplifying assumptions, we were able to find two classes
of four-dimensional spherically symmetric solutions on the brane in unitary and non-uniary
gauges. Both of them were flat solutions on the brane with different background Stckelberg
fields (after a coordinates redefinition). We note that general massive braneworld solutions
should reduce to the massless braneworld solution in the limit of zero bulk graviton mass
as has been studied in [59]. To restore the GR or the original DGP model on the brane,
we should consider certain nonlinear terms in the bulk field equations and the brane junc-
tion conditions, which make the solving procedure more difficult (because of the bulk mass
terms). We are attempting to follow alternative approaches, such as solving the field equa-
tions numerically or finding the effective 4D field equations on the brane for the new massive
braneworld theory [60, 61], to examine the Vainshtein mechanism in our model. This issue
in the absence of the Boulware-Deser ghost and also the instability issue are subject of our
forthcoming work.
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Abstract. Alborz observatory is an EAS array in the heights of Alborez mountain
chain near Tehran. For the development of the array, more number of detectors is
inevitable. The managing the financial resources and achieving the highest efficiency
of the array is important for the project. Therefore, Water Cherenkov Detectors has
been used for 9 months in the same way as the previous experiment with Scintillation
Detectors in a 4-fold square arrangement. After a hardware calibration procedure,
the experimental data set was simulated by CORSIKA code and the experimental
restrictions were applied over the data set. In this work, the simulation is calibrated
with the real experimental results, and it presents a comparable parameter between
the experiment and the simulation. The obtained results show that the simulation is
in agreement with the experimental results.

Keywords: Extensive Air Shower (EAS), Cosmic Rays, Water Cherenkov Detector(WCD)

1 Introduction

Alborz observatory2 is an Extensive Air Shower (EAS) array of particle detectors, in the
range of UHE cosmic and gamma rays, located near Tehran (35◦N , 51◦E) at an altitude of
2650m a.s.l. Based on the models of EASs, the altitude is around the shower maximum of
Cosmic Ray(CRs) with 1017 to 1018 eV [1, 2, 3, 4, 5]. In this energy range and with the area
of the observatory (∼ 2×105 m2), detection rate is a very rare event [3]; but the array is able
to detect lower energy CRs[3]. Lower threshold energy of a prototype array of a 4-fold square
shaped NaI scintillation detectors, is about 5 × 1013 to 1014 eV[6, 7]. The development of
the array in a larger area with more number of detectors increases the event rate and makes
more accurate results due to its more rich data[8]. Many aspects of particle scintillation
detector(SD) parameters and their effects on the detection efficiency have been the subject
of many studies[9, 10]. To apply more detectors in the array, it is needed to have a suitable
simulation for the experiment. Since large number of SDs cost too much, they are not an
accessible choice for the future plan of the observatory. Water Cherenkov Detector (WCD)
is a less expensive alternative. The alternative is sometimes used by other scientists for
detection of charged particles via detection of cherenkov radiation inside water[11, 12, 13].
The WCD is a cylindrical water tank, which is more accessible and cheaper in comparison
with the SDs. Therefore, the detector was studied with more details in some independent
experiments for the WCD individually[14, 15]. In the next step, its operation investigated
in an array of WCDs similar to the SD array[6] because there was a good experience with
the array of SDs[15, 16, 19, 20].

2http://www.sina.sharif.ir/õbservatory
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In fact, this work, tries to answer the question: ”Could the WCDs be as confident as SDs in
the array arrangement?”.
Obtained results from the WCD experiment, showed a good agreement with the SD exper-
iment. Of course there are some differences which are mostly due to the different geometry
and different detection procedures of WCDs and SDs[6].
Detection mechanisms of charged particles by SDs and WCDs are quite different[21]. The
arrangement of the two arrays (SDs and WCDs) are the same but dimensions of the WCDs
are different from SDs. Target of this work, is the calibration of the simulation, by the
obtained results of the prototype WCD experiment.
In the 2nd section, the experimental arrangement is briefly introduced. 3rd section studies
the error estimation of the experiment. In section 4, simulation procedure of the exper-
imental events is presented in two steps; generation of the events by CORSIKA code[24]
and application of the experimental restrictions over the simulated events. The fifth section
compares the results of the simulation and the experiment. And finally in the last section,
some discussions about the results and future plans are presented. Also in this section, few
comments been proposed to have more efficient simulations in the future.

2 Experimental arrangement

A 4-fold square array of WCDs with the side of 6.08m is located on horizontal surface of
the physics department roof at Sharif University of Technology (35◦43′N, 51◦20′E, 1200m ≡
890 gr/cm

2
). Each detector is a cylindrical metallic reservoir painted white inside, with

64cm diameter and 120cm height, it contains about 380 liters of sealed water (Figure 1a).
There is a 52mm EMI 9813B PMT (www.electronictubes.com) faced inside water[6] at the
center of upper surface of the WCDs.
If at least one charged particle passes through the water, its Cherenkov blue light radiation
(in the range of 470nm) is enough to turn the PMT on[14]. An investigation on a single WCD
has shown that more than 90% of particles passing through the WCD are detectable[15].
The PMT output pulse height is related to:
i) direction, ii) number and iii) location of the passed particles through each WCD[15].
The used PMTs have amplification factor of 1× 108 and its supporter electronics is a set of
NIM modules and a Multi Channel Analyzer(MCA) (Figure 1b). It is used 4 fast Discrim-
inator (CAEN N413A) operating at fixed levels around 35mV to 200mV. The thresholds
are set to separate signals from background noise. The 4 Discriminator outputs fed into 3
Time to Amplitude Converters (TAC)(EG&G ORTEC 566) which are set to 200ns full scale
(Maximum acceptable time differences between each two WCDs). Therefore, it is obtained
3 ∆ts (∆t31, ∆t32 and ∆t34) which are fed into 3 TACs (1 to 3 in Figure 1b). Meanwhile it
was recorded true time (GMT) of each EAS event (TGMT ) with the accuracy of synchronized
computer with the site www.timeanddate.com. TAC outputs are fed into a Multi parameter
MCA (KIAN AFROUZ Inc.) via an Analogue to Digital Converter (ADC)(KIAN AFROUZ
Inc.). The first triggered case is on the first parameter (∆t31). When it turns on, the event
will be recorded and selection of true events is postponed to off-line parts. Usually in large
arrays there are some problems like memory and off-line processing ones with the recorded
large date sets. Since our experimental arrangement has not the problems, therefore, it was
applied a soft trigger case to record the events. Meanwhile, this condition needs a poor logic
and less electronic modules too. A total of 30 experiments have recorded 1,768,195 events
in 12,258,670.0 seconds for about nine months. Off-line triggering condition has eliminated
any event which has any null ∆t’s. This step eliminated most of the useless events. Some
more refinements are used to improve the accuracy of the data set. Finally it was obtained
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476,675 true EAS events (∼ 27%) with the rate of 0.0389 Hz. In section 4.2.2 the number of
triggered cases is applied on the simulation. The number of triggered cases in the simulation
is: turn on all of the 4 detectors on a square configuration like the experiment.

3 Error investigation

3.1 Independency of the experimental events

Primary cosmic rays with different sources miss their directions due to the magnetic field or
other effects on their path. When an EAS is recorded, it is expected that the event should
be quite independent from the other recorded events. To verify the in-dependency, the rate
and time separation between consequent events were studied. These sequential events are
between each two, three, four, five and six member sequences.
Figure 2(a) shows the distribution of time differences between each two consecutive events
(∆t1) which has a good agreement with exponential distribution function F (λ1) = Aexp(−λ1∆t1)
with λ1 = 0.0391 Hz. Meanwhile, it is obtained ∆tm = ti − ti−m with (m=) 2, 3, 4 and 5.
Figure 2(b) shows a good agreement between the obtained results and Gamma-Function

G(∆tm, λm,m) =
∆tm−1

m

(m− 1)!
Nλmmexp(−λm∆tm) (1)

where λ̄ = 0.0395±0.0002 Hz for the obtained 5 λs. Therefore, the events are quite random.
CORSIKA code uses a random generator with 109 sequence length loop for generation of
simulated events[24] which guarantees the in-dependency of the events.

3.2 Angular resolution of the experiment

Calculated errors of the array with scintillation detectors are investigated from error propa-
gation of all of experimental parameters over the angular resolution of the experiment which
is 5.0◦[16]. In the WCD, error propagation procedure, causes 7.2◦±1.0◦ for the angular res-
olution of WCD array[6]. The different angular resolutions of the the SD and WCD arrays,
are due to the different geometries and dimensions of the SDs and WCDs. In follow, it seems
that it is better to use a binning with at least 6.2◦ intervals. Since in the SD experiment[16]
it has been calculated error of the experiment by error propagation procedure equal to 5.0◦

and after it, in another work, but with the data set and with moon shadow effect, it has
been obtained 4.5◦[17] angular error. Therefore, in this investigation it is used a smaller 5◦

binning for the events.

4 Simulation of the experimental events

The simulation contains two parts:
The first one is generation of some CORSIKA simulated events(SEs) comparable with the
number of experimental events. It should be suggested that the creation time of the data
set with a normal PC was as long as the experimental duration itself.
In the second part of the simulation, the experimental constrains were applied to the created
events. In this part the calculations over the simulated data set are exactly the same as
calculations on the data set of the real experimental events.
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4.1 Generation of the CORSIKA simulated events

A sum of 392,200 CORSIKA (V6204 code) events were simulated for a flat surface[24].
GHEISHA and QGSJET models were used for low and high energy ranges of hadronic
interactions respectively. Below the knee, about 90% of primary cosmic rays are Protons,
10% are α particles (Helium nucleus) and less than 1% contains heavier elements[3, 21, 25].
Therefore, it was considered the primary cosmic ray composition (90%, 10%, 0%) in the
simulation.
These SEs are created for the array site (University site) with 1200 m a.s.l., Bx = 28.1 µT
and Bz = 38.4 µT (Figure 1), and energy distribution power is dN/dE ∝ E−2.7.
Azimuth angles of the SEs are from 0 to 360◦ uniformly. CORSIKA random generator
considers dN/dθ = A sin θ cos θ for zenith angle distribution of the SEs[24]. Zenith angle of
the SEs were considered from 0 to 60◦.
Lower and higher energy thresholds of the simulation were considered as 50 TeV[16] to 5 PeV
(few events per experimental duration) without thinning. Also as an input information for
the simulation, it was considered energy cuts for hadrons, muons, electrons and photons 0.3,
0.3, 0.003 and 0.003 GeV, respectively.

4.2 Application of the experimental restrictions over the SEs

This part was divided into three sub-parts.
i) Calculation of effective surface of the WCD for each SE, individually.
ii) Application of experimental trigger condition over each SE.
iii) Finding a comparative parameter to compare the simulation and experimental results.

4.2.1 Calculation of effective surface of the WCDs for each SE

CORSIKA code creates SEs for a flat surface and flat detectors[24]. The generated EAS
events, are recorded in a square format with the accuracy of 1cm. Therefore, it is needed to
calculate the equivalent effective surface of the WCDs as a flat square detector in different
angles. Since the WCDs are 3 dimensional, effective surface of the WCDs depends on zenith
angle of the events (Figure1c), therefore, zenith distribution function of the events will be:

dN/dθ = A sin θAeff (θ) cos
(n−1) θ. (2)

Where ”A” is the proportionality constant, sin θ is due to the FOV of the array; Aeff is
the effective surface of the WCD, and cosn−1 θ is due to the atmospheric thickness effect[6].
The effective surface Aeff (θ) is:

Aeff = P0A0 cos θ + P90A90 sin θ (3)

where A0 and A90 are surfaces of the WCD for 0◦ and 90◦ zenith angle events respectively.
Also P0 and P90 are detection probabilities in these angles where P0/P90 = 2.1[15].

4.2.2 Application of trigger case over each SE

An EAS event (in 50 TeV to 5 PeV energy ranges) extends on a vast region on the ground
(more than a few kilometers in radius) but there is a very low surface density at larger radii.
A large square array composed of cells of size Aeff are considered as a Simulated Detector
Array (SDA)(Figure 3). The center of each SE is projected on the center of the related SDA.
In an independent simulation for one of the WCDs[15] it is obtained that the response of
the WCD for a charged particle is more than 90%[23]. Therefore, in the SDA the response
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of each virtual WCD (VWCD) is considered to be 1. It is assumed that if a charged particle
passes through a VWCD, it will be detected.
Trigger condition for each SE is the same as in section 2. In the experiment, an event
is accepted if all of the 4 WCDs record, passing of at least one charged particle. Now
in the simulation, the condition is applied again for VWCDs. If an EAS event satisfies
at least one square configuration like the experiment (Figure 3 shows 2 triggered cases)
essentially it might be detected by the array, and if the number of the triggered cases
increases, detection probability will be increased. From the projected data over VWCDs,
it is possible to calculate zenith(θ) and azimuth(ϕ) angles of each SE, exactly the same as
calculations for the experimental events[6]. In this method, it has been calculated zenith
and azimuth angles (θ, ϕ) of each SE by least square method[26, 27].
Since the number of VWCDs increases with the second power of the SDA size, it is efficient
to obtain a better estimation about the size of the SDA before starting the simulation. Since
it should be estimated the SDA size for all of the SEs, therefore, it was calculated a weighted
mean size l̄WCD =

√
Āeff , which is used for mean length of each VWCD with the mean

area of Āeff in the SDA:

Āeff =

∫ π/3

0
(P0A0 cos θ + P90A90 sin θ) sin θdθ∫ π/3

0
sin θdθ

= 0.65 m2. (4)

l̄WCD is equal to
√
0.65 = 0.81m.

Therefore, it was calculated mean density of particles per each VWCD for 50,000 random
SEs, vs. radius from shower core. Figure 4 shows density of charged particles per each
VWCD. At r = 500× l̄WCD the density about 0.47 particle per Aeff . Therefore, probability
of trigger cases of the experiment (turning on four VWCDs in a square configuration) be-
comes less than a few percent in larger radii. Therefore, the SDA was considered 1000×1000
square shaped detectors (Figure 3).

4.2.3 A comparative parameter between the SEs and the experimental events

Thickness of EAS front at the center, is less than a meter (∼ a few ns) and at the outer
regions around a few meters (∼ a few 10ns)[1, 3, 21, 28]. In the 4-fold WCD experiment
∆ts at the order of ten nanoseconds, in a TAC duration of 200ns (more details in section 2).
TAC starts when the first particle of EAS front passes through the start detector and it
stops when the stop detector receives its first particle. Therefore, the experiment is only
able to detect the first particle passes through each WCD. So in the SDA, it will be recorded
only time of the first particles hits on each VWCD.
Now the experimental trigger condition is applied for the SDA from the first VWCD (up-
right corner pixel (-500,-500)) until the last one (bottom-left corner (500,500)) (Figure 3)
and scans all the SDA. Number of triggered squares (Ntrig) over each SE, could be a pa-
rameter to compare the SE and a real EAS event. The parameter seems to be related to
detection probability of the SE. In each SE ”the number of triggered cases”, was calculated
a direction. For each SE there are Ntrig independent directions (θs and ϕs). Since detection
efficiency of the charged particles is high, therefore, the edge of the front will be detected
and the calculated directions of the shower by a small array is on the normal to the shower
edge. Therefore, when it is averaged over all of the directions of the triggered conditions,
the directions are axisymmetric and the distribution of the obtained directions around the
primary direction is a symmetric peak function[30, 31] and may be there is a large error bar
for the obtained direction, but the real direction of the EAS is near to the average. Since it is
not well known which of the squares is matched on the experimental arrangement, therefore,



154 M. Khakian Ghomi

average of the directions is considered as the direction of the SE and standard deviation of
the directions will be angular resolution of the SE. To calculate the angular resolution of
the events in each 5◦ bins, it is calculated σ̄ =

√
Σσ2

i /N , where σi is angular resolution of
each SE and N is the number of SEs in each 5◦ bin. This is due to the stochastic nature of
the CORSIKA SEs specially by hadronic primary particles and their conic front shape.

5 Experimental and Simulation results

The first subsection is specified the Ntrig as detection probability, then in the next subsec-
tions the parameter is used for comparisons between the simulation and the experiment.
Importance of the parameter Ntrig, depends on the compatibility of the simulation predic-
tions and experimental results.

5.1 Specification of Ntrig with comparison of the experiment and
simulation

On each SE, all of the triggered cases over the SDA are considered one by one. From the
Ntrig conditions in each SE, Ntrig number of θs and ϕs are obtained. Therefore, θ̄ ± σθ for
zenith angle of each SE were calculated as follows:

θ̄ =
1

Ntrig
Σ

Ntrig

i=1 θi, σθ =

√
Σ

Ntrig

i=1 (θi − θ̄)2

Ntrig
(5)

In 11 steps it was applied lower threshold of Ntrig from 1 to 11 one by one. By fitting
the equation 2 on the 11 distribution it was obtained 11 cosine power ’n’ which were drawn
in Figure 5. By fitting an arbitrary function (y2 = a+b lnx) with the best fit (r2 = 0.99904)
and with n = 6.8 ± 0.1[6], Ntrig = 6.82 ± 2.11 was obtained. Therefore, Ntrig = 6.82 ≈ 7
shows the most compatible distribution of detectable SEs with the experiment; therefore,
Ntrig ≥ 7 are considered as detectable SEs.

5.2 Estimation of energy threshold of the experiment by the de-
tectable SEs

To check the number of triggered cases as a candidate for the detection probability in the
simulation, it is better to estimate the threshold energy of the SEs with 4.71 ≤ Ntrig ≤
8.93 ≡ Ntrig ∈ {5, 6, 7, 8} (Ntrig = 6.82± 2.11).
In the WCD experiment, threshold energy was Eth ≈ 95 TeV [6]. For estimation of the
Eth from the simulation, it was averaged over the energy of events with Ntrig ∈ {5, 6, 7, 8},
which in the 392,200 SEs, there are 11,553 events. Average energy and standard deviation
of the events are Ēth ± σth = 108.09 ± 117.63 TeV. More detailed is shown in Table 1. It
is seen that Ē has small fluctuation between 106.86 and 111.12 for Ntrig ∈ {5, 6, 7, 8}. The
large standard deviations are due to:
i) the stochastic nature of the simulated events;
ii) large zenith angle events (40≤ θ ≤60) with higher energies up to 5 PeV with small Ntrig.
Effects of zenith angle and energy will be discussed in subsection 5.3.
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Ntrig # Ē σE
5 3538 106.93 126.67
6 3012 111.12 122.41
7 2575 107.32 114.20
8 2428 106.86 100.14

Table 1: Number, Mean Energy and Standard deviation of energy of events(σE) with
Ntrig=5 to 8 individually. This results show that the threshold energy of the experiment is
about 100 TeV.

Ntot N(0≤θ≤40◦) N(40◦≤θ≤60◦) N(40◦≤θ≤60◦)/Ntot

SEall 392200 215852 176348 44.96%
SENsq≥7 109440 100668 8752 8.00%

Table 2: In all of SEs 45% of the events are in the zenith angles 40 ≤ θ ≤ 60 in case that in
the detectable events there is only 8% of the total events in zenith angles 40 ≤ θ ≤ 60.

5.3 Zenith angle effect on the parameter Ntrig

From the 392,200 SEs 242,308 of them are null events and have no triggered cases (Ntrig = 0)!
This means that about 61% of the SEs are not detectable at all. So the question is ”why
is the high fraction not detected?”. Average zenith angle of the null events is θ̄0 ± σθ0 =
43.55◦±11.58◦, in case that, all SEs have θ̄tot±σθtot = 36.56◦±14.43◦. Also for 53,212 higher
energy null events (E ≥ 100 TeV), there is θ̄0 ± σθ0 = 47.74◦ ± 8.67◦ but for 55,217 higher
energy (E ≥ 100TeV) detectable events with Ntrig ≥ 7 there is θ̄det±σdet = 25.91◦±11.18◦.
Figure 6 shows that higher energy events with larger zenith angles seems to be more fret,
and triggered cases become harder for them.
CORSIKA selects the primary zenith angle of the events with the distribution of sin θ cos θ[24].
Maximum of the distribution sin θ cos θ is on the 45◦ and contribution of the total events in
the interval 40◦ ≤ θ ≤ 60◦ is about 45%, in Table 2 it is seen that detectable events in the
interval are only about 8%. Therefore, as a result:
i) higher energy events with higher zenith angles make a large uncertainty over the energy
threshold.
ii) for more efficient simulations, it is better to simulate smaller zenith angle events (0 ≤
θ ≤ 40◦).

5.4 Observation of atmospheric optical thickness for detectable events

Secondary particles of real EAS events with higher zenith angles, have longer paths in the
atmosphere. So higher zenith angle EAS events have less secondary particles and fret particle
densities at the ground[29, 32]. In visible astronomy there is a well known parameter as air
mass which decreases the light intensity of astronomical sources exponentially with sec θ[33]:

I = I0e
−τ0 sec θ. (6)

In the astroparticle field, slant depth (X =
∫
ρdv) plays the role of air mass in visible

astronomy. In the SEs it is expected that increase of zenith angle of the events decreases
Ntrig. Figure 7 shows mean number of triggered case (Ntrig) for the events with Ntrig ≥ 7
for 5◦ intervals. It is seen that there is a compatibility (r2 = 0.93202) of the equation 6 with
Ntrig(θ).
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Ntot N(50≤E≤100)TeV N(100≤E≤5000)TeV N(100≤E≤5000)TeV/Ntot

SEall 392200 271664 120536 30.73%
SENtrig≥7 109440 54223 55217 50.45%

Table 3: In all of SEs 70% of the events are in the energy range 50 ≤ E ≤ 100 TeV it is in
case that in the detectable events there is only 50% of the total events are in in the energy
range 50 ≤ E ≤ 100 TeV.

5.5 Effect of primary energy of SEs on Ntrig

Figure 8 shows the distribution of the null SEs (Ntrig = 0) near to the lower threshold
of the simulation. It is observable that the distribution is decreasing steeply by a power
law. Average and standard deviation of these events are Ē0 ± σ0 = 90.78 ± 78.50 TeV.
It is expected that higher energy events have more secondary particles, so they are more
detectable. Figure 9 shows, Ntrig increases with increase of energy. Higher energy particles
have larger number of secondary particles, so detection probability increases with increase of
energy. Of course large error bars are due to: i) zenith angle effect and ii) smaller statistics
at higher energies.
Table 3 shows that if 50 TeV threshold energy is replaced by 100 TeV, the simulation will
be considered more efficiently.

6 Conclusion

Simulation in experimental researches is the second wing of the experiment. The simulation
should be completely harmonized and calibrated by the experiment. In this work to verify
the simulation and its calibration, it was used the CORSIKA code to generate of a set of
simulated events and compared the obtained results with the experimental ones. It was found
a parameter which is ”the number of triggered cases” in the simulation (Ntrig). The obtained
results show that the Ntrig is proportional to detection probability of the experiment. Some
results are:
Ri) Higher zenith angle events are less detectable exponentially with sec θ similar to air −
mass effect.
Rii) Energy threshold of the experimental events and the SEs are near to each other.
Riii) The most important obtained result is the compatibility of the simulation with the
experiment.
Of course for more accurate analysis in the future, it is better to repeat the simulation more
efficiently. Since the generation of the simulated events is a time and memory consuming
work, some comments are proposed for the future investigations:
C1) It is more efficient in time and memory to simulate lower zenith angle events (0 ≤ θ ≤
40◦).
C2) It is better to apply threshold energy equal to 100 TeV, lower than this amount is
eliminated
Generated hadronic events by CORSIKA code, have a stochastic nature and their fluctuation
is high, therefore, it is better to simulate as much as possible in the future plans for more
confidence (specially in the recommended angle and energy domains).
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Figure 1: Different parts of the figure respectively show (a): Schematic configuration of
the detector array, (b): Data acquisition system and used electronic circuits, (c)(inside a):
Vertical (A0) and horizontal (A90) sections of the WCDs.
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Figure 2: a) The fitted exponential function on the true time(GMT) differences of each
two following events. b) Time differences between 2, 3, 4 and 5 sequential events.
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Figure 3: The SDA (-500:500×-500:500) with VWCD size lWCD =
√
Aeff meters. In this

part it is shown two triggered case samples of the simulation.
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Figure 4: Secondary particle density function in particle/m2. WCDs have mean cross
section Āeff = 0.65m2. Therefore the density 1/0.65 = 1.54 particles per WCD is the least

density which must be considered in our simulation. This radius is 266 m = 328×
√
Āeff . In

the simulation it has been considered until 500×
√
Āeff = 0.47 particles per each VWCD.
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Figure 5: By variation of the lower threshold over Ntrig and fitting dN/dθ on the obtained
distributions, it is found the first 11 powers (n). Comparison of the simulated results and
the experimental results (nexp = 6.8 ± 0.1) shows that, the nearest SE distribution to the
experimental data set, is set of SEs with 4.71 ≤ Ntrig ≤ 8.93 ≡ Ntrig ≈ 6.82 ± 2.11.
Therefore detection condition is considered as Ntrig ≥ 7.

Figure 6: Average zenith angle of: the null SEs is θ̄0 ± σθ0 = 43.55◦ ± 11.58◦, all SEs
have θ̄tot ± σθtot = 36.56◦ ± 14.43◦, 53,212 high energy null SEs (E ≥ 100 TeV), θ̄0 ± σθ0 =
47.74◦ ± 8.67◦, 55,217 high energy (E ≥ 100 TeV) detectable SEs Ntrig ≥ 7, θ̄det ± σdet =
25.91◦ ± 11.18◦.
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Figure 7: Mean number of Ntrig vs. sec θ of the events with Ntrig ≥ 7. The fitted curve
is Ntrig = N0e

−τ0 sec θ. It is similar to air mass effect on light intensity of stars, which is
related to the atmosphere thickness.
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Figure 8: Number distribution of the null events with Ntrig = 0 vs. energy of the simulated
events.

Figure 9: Mean and standard deviation (N̄trig ± σNtrig ) of the number of triggered cases
vs. energy of all of the simulated events.
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