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Abstract. In the present work, we have obtained the equation of state for neutron
star matter considering the influence of the ferromagnetic and antiferromagnetic spin
state. We have also investigated the structure of neutron stars. According to our
results, the spin asymmetry stiffens the equation of state and leads to high mass for
the neutron star.

Keywords: Neutron stars, Spin asymmetry, Equation of state

1 Introduction

Neutron stars are hyper-dense and magnetized laboratories for investigating strange phenom-
ena in the nuclear and particle physics. Pulsars and magnetars are two kinds of neutron stars
with strong surface magnetic field. Actually the exact origin of this magnetic field is not yet
known. In the interior of magnetars, the magnetic field strength may be even larger accord-
ing to virial theorem [6] and such strong field may cause spin asymmetry. The occurrence
of such strange phenomena can affect the equation of state (EOS) of neutron star matter.
Theoretically, the equation of state has been applied to determine the maximum mass of
a neutron star which should be in agreement with the precise observations. The accurate
measurement of neutron star mass M = 1.97 £ 0.04M¢ in the system PSR J1614-2230 was
one of the most important development in observational data [9]. This precise measurement
is based on Shapiro delay in neutron star-white dwarf binary [12]. Another well-measured
massive neutron star is PSR J0348+-0432, with mass about M = 2.01 & 0.04M, [1]. Next,
there is an evidence that the black widow pulsar PSR B1957420 might have even larger
masses approximately Mpgr = 2.4Mg [17]; however, one have to consider the uncertainties
in this mass estimation. Finally, the largest mass 2.1Mq < Mpygs < 2.7M¢ has been given
for the gamma-ray black widow pulsar PSR J1311-3430 by simple heated light curve fits
[16]. These massive neutron stars require the equation of state of the system to be rather
stiff. Therefore, theoretical approaches should confirm these observational data.

Recently, several studies used different theoretical approaches showed the stiff EOS for
the neutron star matter. Gandolfi et al. [10] have used quantum Monte Carlo techniques
and calculated the equation of state of neutron star matter with realistic two- and three-
nucleon interactions. Their calculation resulted M4, < 2.2Mg for neutron star mass.
They have also used Auxiliary Field Diffusion Monte Carlo technique by incorporating semi-
phenomenological Hamiltonian including a realistic two-body interaction and many-body
forces [11]. They found the maximum mass of neutron star lies in the range 2.2-2.5 times
of solar mass. Some other attempts by Partha Roy Chowdhury showed the rotating star
mass is around (1.93-1.95)Mg [7] . They have applied a pure nucleonic equation of state
for neutron star matter. Shen et al. [14] have constructed a new equation of state for
a wide range of temperatures, densities and proton fractions to be used in astrophysical
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simulations of neutron stars. They have predicted that the maximum mass of neutron star
is about 2.77M, with a radius of about 13.3 km. Sun et al. [15] have investigated neutron
star structure using EOS which has provided by density dependent relativistic Hartree-
Fock theory. Their results showed that maximum mass of neutron stars lies in the range
(2.45 — 2.49) M. More recently, we gained Mys = 1.991M by applying the Lowest Order
Constrained Variational (LOCV) method and using UV;4+TNI potential [4].

In this article, we investigate some physical properties of polarized neutron star matter
using the LOCV method and the AVig potential. This modern equation of state is derived
from an accurate many-body calculation and is based on the cluster expansion of the energy
functional. Moreover, we obtain the particles abundance, equation of state and the structure
of neutron stars. Finally, we compare our results by experimental data.

2 Formalism

We assume the neutron star matter as a charge neutral infinite system that is a mixture
of leptons and interacting nucleons. The energy density of this system can be obtained as
follows,

€=¢eN+er, (1)

where en(g;) is the energy density of nucleons (leptons). In the following, we determine
these energy densities in more details.

2.1 Energy density of leptons

The energy density of leptons, which are considered as noninteracting Fermi gas, is given
by,

Elop = Z Z (ml204+h202k2)1/2. 2)
l=e, p k<kf

In this equation, k" = (67%p;/ v)1/3 is Fermi momentum of leptons and v is degeneracy. For

fully spin polarized matter, degeneracy is v = 1.

2.2 Energy density of spin polarized nucleon matter

The nucleonic part of neutron star matter is composed of neutrons and protons with densities
pn and p,, respectively. The total number density of the system is

p = pPpTtPn,
= (o7 + o)+ (o + o). (3)

The labels (1) and (]) are used for spin-up and spin-down nucleons, respectively. The
following parameters can be used to identify a given spin-polarized state for the asymmetric
nuclear matter,

m_ @ m_ @
b=, =P P

Pp Pn

(4)

0p and 6, are proton and neutron spin asymmetry parameters, respectively. In the fully
ferromagnetic (FM) polarized nuclear matter, spin of all neutrons and protons are parallel,
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dn, = 6, = 1.0, and in the antiferromagnetic (AFM) spin state, we have 6,, = £1.0, d,, = F1.0.
The asymmetry parameter which describes the isospin asymmetry of the system is defined
as

)

5:&%¥@:1—2% (5)

where x, = p,/p is the proton fraction. Pure neutron matter is totally an asymmetric
nuclear matter with z, = 0, while for the symmetric nuclear matter z, = 1/2. The energy
density of spin-polarized asymmetrical nuclear matter, £,, can be determined as,

en = p(E +m), (6)

where m = 938.92 MeV is the nucleon mass and E is the total energy per nucleon which is
calculated by using the LOCV method as follows.
We adopt a trial many-body wave function of the form

Y =Fo, (7)

where ¢ is the uncorrelated ground state wave function of A independent nucleons (simply
the Slater determinant of the plane waves) and F = F(1---A) is an appropriate A-body
correlation operator which can be replaced by a Jastrow form i.e.,

F=8][]r6. (8)

i>j

in which § is a symmetrizing operator. Now, we consider the cluster expansion of the energy
functional up to the two-body term [8],

Enuel(f)) = 20HW) _ (9)

The one-body term FE; for an asymmetrical nuclear matter is

h2k?
ReY Y Y M (10

T=n,p =1, k<kr?

where kp? = (672p7)"/3 is the fermi momentum of each component of spin-polarized asym-

metric nuclear matter. The two-body energy Fj is

B = o Y2l - i), (1)
where
/(12) = - [£(12), [V, F(12)] + F12)V (12)(12) (12)

Here, f(12) and V(12) are the two-body correlation and potential. In our calculations,
we use the AVig two-body potentials [20]. Now, we minimize the two-body energy, Eq.
(11), with respect to the variations in the correlation functions f®) . but subject to the
normalization constraint [13, 2],

i |~ 2] i = 0, (13)
j
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where in the case of spin polarized asymmetrical nuclear matter, the Pauli function hg, 1, (1)
is as follows,

J2 (k) r) 97 —1/2
1—g (Lilkeln) S, =+1,T. = £1
Fr T

hs, r.(r) = (14)

1 otherwise
From the minimization of the two-body cluster energy, we get a set of coupled and uncoupled
Euler-Lagrange differential equations [5]. We can calculate the correlation functions by

numerically solving these differential equations and then, using these correlation functions,
the two body energy is obtained. Finally, we can compute the energy of the system.

2.3 URCA processes

Now, we investigate direct URCA processes in the spin polarized neutron star matter. In
fully polarized ferromagnetic spin state, the nature of chemical equilibrium is mainly domi-
nated by the following weak interaction processes,

n(t) — p(t) +
p(t) + 1) — n() + ul) (15)

Here, v; stands for the leptons neutrinos which leave the system without delay. In this
case, the g-equilibrium conditions and charge neutrality of neutron star matter impose the
following coupled constraints on our calculations,

pe(t) = pu(M) = pnl(1) — pp(1)
= 4(1—22,)S2(p, 6, = 0, = 1) +8(1 — 22,)%S4(p, 6, = 5, = 1) (16)

pp(1) = pe(T) + pu(T) (17)

where Sy and Sy are given by [3],

1 (0%E(p,5,,6
B=0

1 (0*E(p,6n,0
Sa(p,dn,0p) = 2 (W)ﬁ .
=0

Similarly, The S-equilibrium and the charge neutrality conditions for fully anti-ferromagnetic
spin polarized are,

(18)

e (J,) = Hp (Jr) = HUn (J,) - :U‘P(T)
4(1 — 22,,)S2(p, 6 = =0, = 1) + 8(1 — 22,,)*S4(p, 6,, = —0, = 1]19)

pp(1) = pe(d) + pu(l)- (20)

We find the abundance of the particles by solving the coupled equations of charge neutrality
and (-equilibrium conditions. Finally, we calculate the total energy and the equation of
state of the neutron star matter.
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Figure 1: The proton fraction in the neutron star matter for different spin states.

3 Results and discussion

Figure 1 shows the proton fraction, x,, versus the baryon number density, p, for unpolarized,
ferromagnetic and antiferromagnetic spin state. It can be seen from this figure that the
abundance of protons is an increasing function of both spin polarization and baryon density.
Therefore, we can conclude that nuclear portion of spin polarized neutron star matter tend
to be symmetric matter. It is also seen that for a given density, the highest value of proton
fraction is gained for the ferromagnetic spin state.

In Figs. 2 and 3, we have presented the energy density, £, and pressure of neutron
star matter as a function of baryon number density, p, for unpolarized, ferromagnetic and
antiferromagnetic spin state, respectively. Here, we have not considered the contribution of
magnetic field. In these figures, we have also plotted the energy density and pressure of the
fully polarized neutron matter (PNM), i.e. 8 =1,6,, = 1. As we can see, the energy density
and pressure increase by increasing both of spin and isospin asymmetry parameters. we have
concluded that the spontaneous phase transition to ferromagnetic and antiferromanetic spin
state does not occur. If such a transition existed, a crossing of the energies of different
polarizations would have been observed at some density, indicating that the ground state of
the system would be ferromagnetic or antiferromagnetic from that density on. As can be
seen in these figures,there is no sign of such a crossing. Our results can be compared with
those of Vidana’s [18, 19]. Also, it is clear from these figures that the EOS of spin polarized
neutron star matter is stiffer than unpolarized matter.

Now, we can investigate the structure of neutron star by using the equation of state and
integrating the TOV equation. A summary of our results for the maximum mass, radius,
central energy density and central baryon density of neutron star predicted from different
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Figure 2: The energy density of neutron star matter versus baryon number density for for
different spin states and fully polarized neutron matter.
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Figure 3: As a Fig. 2 but for pressure.
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Table 1: Maximum mass, radius, central energy density and central baryon density of neu-

tron star. The gravitational mass is given in solar mass (Mg).

EOS Moz | R (km) [ €. (107 g/em?) | p. (fm~=3)
NSM [12] 1.63 8.04 - -

FM-NSM 1.83 10.24 30.28 1.27
AFM-NSM | 1.88 10.54 28.67 1.2
PNM 1.99 10.8 27.14 1.13

equations of state is given in table 1. We can conclude from this table that the more
asymmetric is the neutron star matter, the higher maximum mass.

4 Summary and Conclusions

The purpose of this paper is investigating the influence of spin polarization on the equation of
state of neutron star matter and, consequently, the structure of neutron star. We have used
the lowest order constrained variational (LOCV) method by employing the AV;g potentials
for nucleon-nucleon interaction. We conclude that the equation of state become stiffer by
considering spin polarization, and it yields to high maximum mass for neutron stars.
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Abstract. We investigate the growth of matter density perturbations as well as the
generalized second law (GSL) of thermodynamics in the framework of f(R)-gravity. We
consider a spatially flat FRW universe filled with the pressureless matter and radiation
which is enclosed by the dynamical apparent horizon with the Hawking temperature.
For some viable f(R) models containing the Starobinsky, Hu-Sawicki, Exponential,
Tsujikawa and AB models, we first explore numerically the evolution of some cosmo-
logical parameters like the Hubble parameter, the Ricci scalar, the deceleration param-
eter, the density parameters and the equation of state parameters. Then, we examine
the validity of GSL and obtain the growth factor of structure formation. We find that
for the aforementioned models, the GSL is satisfied from the early times to the present
epoch. But in the farther future, the GSL for all models is violated. Our numerical
results also show that for all models, the growth factor for larger structures, like the
ACDM model, fit the data very well.

Keywords: Modified theories of gravity, Dark energy

1 Introduction

The observed accelerated expansion of the universe, as evidenced by a host of cosmological
data such as supernovae Ia (SNela) [1], cosmic microwave background (CMB) [2, 4], large
scale structure (LSS) [5], came as a great surprise to cosmologists. The present accelerated
phase of the universe expansion reveals new physics missing from our universe’s picture,
and it constitutes the fundamental key to understand the fate of the universe. There are
two representative approaches to explain the current acceleration of the universe. One
is to introduce “dark energy” (DE) [8] in the framework of general relativity (GR). The
other is to consider a theory of modified gravity (MG), such as f(R) gravity, in which
the Einstein-Hilbert action in GR is generalized from the Ricci scalar R to an arbitrary
function of the Ricci scalar [12]. Here, we will focus on the later approach. In [15], it was
shown that a f(R) model with negative and positive powers of Ricci curvature scalar R can
naturally combine the inflation at early times and the cosmic acceleration at late times. It
is actually possible for viable f(R) models for late time acceleration to include inflation by
adding R? term. Therefore, it is natural to consider combined f(R) models which describe
both primordial and present DE using one f(R) function, albeit one containing two greatly
different characteristic energy scales [16, 17]. In [19], it was pointed out that the f(R)-gravity
can also serve as dark matter (DM). In [20, 23], a set of f(R)-gravity models corresponding
to different DE models were reconstructed. Although a great variety of f(R) models have
been proposed in the literature, most of them is not perfect enough. A viable f(R) model
should simultaneously satisfy stringent solar-system bounds on deviations from GR as well
as accelerate the expansion at late times.
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In order to distinguish between DE and MG, it is crucial to measure the growth of
structure in addition to the expansion history. This is because any given expansion his-
tory predicted by a MG model could be emulated by a smooth DE component. Measuring
the matter velocity field at the locations of the galaxies via spectroscopy helps differenti-
ate between the effect of DE and MG as the source of the accelerating universe through
measurements of Redshift Space Distortions (RSD) [25]. RSD was identified by the recent
“Rocky IIT” report as among the most powerful ways of addressing whether the acceleration
is caused by DE or MG [26]. For the case of DE model, the growth index is independent of
the size of structure, as the structure formation equation for the scales larger than the Jeans
length is independent of the wavenumbers while in the MG model, the effective gravitational
constant relates the growth index of the structure to its size [27, 28, 29, 30]. An interesting
feature of the f(R) theories is the fact that the gravitational constant in f(R)-gravity, varies
with length scale as well as with time. Thus, the evolution of the matter density perturba-
tion, 0y = dpm/pm, in this theory is affected by the effective Newton coupling constant, Geg,
and it is scale dependent, too. Therefore, the matter density perturbation is a crucial tool to
distinguish MG from DE model in GR, in particular the standard ACDM model. The scale
dependencies of the linear growth rate of metric and density perturbations in f(R)-gravity
can change predictions for cosmological power spectra in the linear regime [31].

On the other hand, the connection between gravity and thermodynamics is one of sur-
prising features of gravity which was first reinforced by Jacobson [32], who associated the
Einstein field equations with the Clausius relation in the context of black hole thermody-
namics. This idea was also extended to the cosmological context and it was shown that the
Friedmann equations in the Einstein gravity [33] can be written in the form of the first law
of thermodynamics (the Clausius relation). The equivalence between the first law of thermo-
dynamics and the Friedmann equation was also found for f(R)-gravity [34]. Besides the first
law, the generalized second law (GSL) of gravitational thermodynamics, which states that
entropy of the fluid inside the horizon plus the geometric entropy do not decrease with time,
was also investigated in f(R)-gravity [36]. The GSL of thermodynamics in the accelerating
universe driven by DE or MG has been also studied extensively in the literature [37]-[58].

All these motivate us to investigate the growth of matter density perturbations in a
class of metric f(R) models and see scale dependence of growth factor. Additionally, we
are interested in examining the validity of GSL in some viable f(R)-gravity models. The
structure of this paper is as follows. In Sec. 2, within the framework of f(R)-gravity
we consider a spatially flat Friedmann-Robertson-Walker (FRW) universe filled with the
pressureless matter and radiation. In Sec. 3, we study the growth rate of matter density
perturbations in f(R)-gravity. In Sec. 4, the GSL of thermodynamics on the dynamical
apparent horizon with the Hawking temperature is explained. In Sec. 5, the cosmological
evolution of f(R) models is illustrated. In Sec. 6, the viability conditions for f(R) models
are discussed. In addition, some viable f(R) models containing the Starobinsky, Hu-Sawicki,
Exponential, Tsujikawa and AB models are introduced. In Sec. 7, we give numerical results
obtained for the evolution of some cosmological parameters, the GSL and the growth of
structure formation in the aforementioned f(R) models. Finally, Sec. 8 is devoted to
conclusions.
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2 f(R)-gravity framework

Within the framework of f(R)-gravity, the modified Einstein-Hilbert action in the Jordan
frame is given by [12]
f(R

SJ - / vV —g d41' {% + Lmatter ) (1)
where G, g, R and Lyatter are the gravitational constant, the determinant of the metric g,
the Ricci scalar and the lagrangian density of the matter inside the universe, respectively.
Also, f(R) is an arbitrary function of the Ricci scalar.

Varying the action (1) with respect to g, yields

1
FG,, =8rGT{™ — 59 (RF = ) + VY F = g, OF. (2)

nz

Here, F = df/dR, Guw = Ry — %ng and Tﬁl) is the energy-momentum tensor of the
matter. The gravitational field equations (2) can be rewritten in the standard form as
[59, 61]

G = 87G(T) + T(D)), (3)

with )
SWGT;EIB) =(1-F)Gu — §gu,,(RF - f)+ V.V, F — g, 0OF. (4)
For a spatially flat FRW metric, taking Tﬁ(m) = diag(—p,p,p,p) in the prefect fluid

form, then the set of field equations (3) reduce to the modified Friedmann equations in the
framework of f(R)-gravity as [62]

3H? = 8rG(p+ pp), (5)
2H = —87G(p+pp+p+pp), (6)
where
1 .
87Gpp = L(RF—f)=3HF+ 3H*(1-F), (7)
-1 .. . .
8tGpp = 7(RF—f) +F+2HF — (1 F)(2H + 3H?) |, (8)
with
R =6(H +2H?). (9)

Here, H = a/a is the Hubble parameter. Also, pp and pp are the curvature contribution to
the energy density and pressure which can play the role of DE. Also, p = pgM + DM + Prad
and p = Prad = pPrad/3 are the energy density and pressure of the matter inside the universe,
consist of the pressureless baryonic and dark matters as well as the radiation. On the whole
of the paper, the dot and the subscript R denote the derivatives with respect to the cosmic
time t and the Ricci scalar R, respectively.

The energy conservation laws are still given by

fm + 3Hprm = 0, (10)
p.rad + 4Hprad - 07 (1]-)
op +3H(pp +pp) =0, (12)
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where py, = ppm + ppoum. From Egs. (10) and (11) one can find

o Pm Prad,
p= ago 707 (13)

where pm, = pBM, + PDM, and prad, are the present values of the energy densities of matter
and radiation. We also choose ag = 1 for the recent value of the scale factor.
Using the usual definitions of the density parameters

Q= Pm _ 87G pm, Qo = Prad 8mGprad, Qp = PD 87Gpp

Pe 3H2a3 ’ ~ pe 3H2at’ pe  3H2

(14)

in which p. = 3H?/(87G) is the critical energy density, the modified Friedmann equation
(5) takes the form
1=0Qun+ Qraa + Op. (15)

From the energy conservation (12), the equation of state (EoS) parameter due to the cur-
vature contribution is defined as
_Pp

fD
w — =-1- . 16
P o 3Hpp (16)

Using the modified Friedmann equations (5) and (6), the effective EoS parameter is obtained

as .
_ptpo _ ,  2H
Cptpo 3H%
Also, the two important observational cosmographic parameters called the deceleration ¢
and the jerk j parameters, respectively related to ¢ and @, are given by [64]

Weff (17)

a H R
S P L 18
9 aH? H2 6H2’ (18)
@ H R R
= =1 =9 . 1
J aH? m Tems T gms (19)

Cosmologists believe that the universe transitioned from deceleration to acceleration in
a cosmic jerk. The deceleration to acceleration transition of the universe occurs for different
models with a positive value of the jerk parameter and negative value of the deceleration
parameter [67]. For example, flat ACDM models have a constant jerk j =1 [70].

3 Growth rate of matter density perturbations

Here, we study the growth rate of matter density perturbations in f(R)-gravity. The origin
of structure formation in the universe is seeded by the small quantum fluctuations gener-
ated at the inflationary epoch. These small perturbations over time grew to become all of
the structure we observe. Once the universe becomes matter dominated, primeval density
inhomogeneities (p/pm ~ 1075 ) are amplified by gravity and grow into the structure we
see today [71].

The evolution of the matter density contrast d,, = dpm/pm provides an important tool
to distinguish f(R)-gravity and generally MG models from DE inside GR and, in particular,
from the ACDM model. We consider the linear scalar perturbations around a flat FRW
background in the Newtonian (longitudinal) gauge as

ds? = —(1+ 20)de2 + a2(t)(1 + 20)da?, (20)



Structure Formation and GSL in f(R)-gravity 85

with two scalar potentials ¥ and ® describing the perturbations in the metric. In this
gauge, the matter density perturbation d,, and the perturbation of 6 F'(R) obey the following
equations in the Fourier space [72, 73]

2

< F\ . 8rGpm . 1 s k . -

- . k? F R 8rG -
OF +3H6F — 0F = —pm0m + Fom, 22
* * <a2 3Fn 3 ) g Pmom (22)
where k is the comoving wave number. For the modes deep inside the Hubble radius
(k?/a® > H?), with considering this fact that the time derivative of F" is small (|F| < HF)
and with neglecting the oscillating mode of §F(§F < HSF < H?), the evolution of matter
density contrast dy, is govern by [74, 75, 77]

Om + 2H b, — 470G o prnd = 0, (23)
where - 22
1 a

Gt == |z —c5—51, 24

& F[3 3k2+M2a2] (24)

and M? = £ The fraction of effective gravitational constant to the Newtonian one, i.e.

Gent /G, is dzPEiRned as screened mass function in the literature [29]. Equation (24) obviously
shows that the screened mass function is the time and scale dependent parameter.

With the help of new variable namely g(a) = dy/a which parameterizes the growth of
structure in the matter, Eq. (23) becomes

d?g H dg H 470G pm

dlna2+<4+m> dlna+<3+ﬁ H? )g(). (25)
In general, there is no analytical solution to this equation. But in [79] for an asymptotic
form of viable f(R) models at high curvature regime given by f(R) = R + R™"™ where
n > —1, an analytic solution for density perturbations in the matter component during the
matter dominated stage was obtained in terms of hypergeometric functions. In what follows,
we solve the differential equation (25), numerically. To this aim, the natural choice for the
initial conditions are g(a;,) = 1 and dcllfa la=a,, = 0, where ay, = 1/(1 + zy,) should be taken
during the matter era, because for the matter dominated universe, i.e. H? = 87Gpy/3
and Geg/G = 1, the solution of Eq. (23) yields d,, = a. The other useful quantity is the
logarithmic rate of change of matter density with respect to the scale factor, known as the
growth factor. The growth factor is defined as [80]

dInd,, dIndy,
) = dlna =-(+2) dz ’ (26)

which is an observational parameter. The redshift space distortion is used as a probe to
measure the growth rate of the structures, f(z), to underpin the expansion history of the
universe and to distinguish between MG and DE theories [30]. In the present work, we
obtain the evolution of linear perturbations relevant to the matter spectrum for the scales;
k = 0.1,0.01,0.001 h Mpc™ ', where h corresponds to the Hubble parameter today. For
smaller scales, k > 0.2 h Mpc™ !, the effect of non-linearity becomes important. In the
non-linear regime, while gravity is still in the weak field limit, density fluctuations are no
longer small and in addition, the density or potential fields may couple to additional scalar
fields introduced in MG theories. The non-linear regime is therefore the hardest to describe
in any general way as the nature of the coupling to scalar fields is theory specific [82].
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4 Generalized second law of thermodynamics

Here, we are interested in examining the validity of the GSL of gravitational thermodynamics
for a given f(R) model. According to the GSL, entropy of the matter inside the horizon
beside the entropy associated with the surface of horizon should not decrease during the
time [33]. As demonstrated by Bekenstein, this law is satisfied by black holes in contact
with their radiation [83]. The entropy of the matter containing the pressureless matter and
radiation inside the horizon is given by the Gibbs’ equation [37]

TxdS = dE + pdV, (27)

where E' = (pm + prad)V, V = %TWA is the volume containing the matter with the radius
of the dynamical apparent horizon 75 = (H? + %)’1/2 and Ty = ﬁ(l - QE;A) is the
Hawking temperature. Here, p = prad = praa/3 is the total pressure of the matter inside
the universe, consist of the pressureless baryonic and dark matters as well as the radiation.
Taking time derivative of Eq. (27) and using the energy equations (10)-(11) as well as the

Friedmann equations (5)-(6) for a spatially flat FRW universe (K = 0), one can find

TS—@@i — H7y) —2H+H3—d—2 F (28)
AZ T ag VA A e de2) "

The horizon entropy in f(R)-gravity is given by Sy = ‘2—5 [84], where A = 4775 is the area
of the apparent horizon. Taking the time derivative of Sa, one can get the evolution of
horizon entropy as

: 1 . (2ra d
T = —— (2Hrp — — | F. 2

ASx = oy (HTA = 7a) ( T dt) (29)
Now, we can calculate the GSL due to different contributions of the matter and horizon.
Adding Egs. (28) and (29), one can get the GSL in f(R)-gravity as [36]

ThSeor = [QHQF ~HHF +2(H + HQ)F} , (30)

4GH*

where Siot = S+ Sa. Note that Eq. (30) shows that the validity of the GSL, i.e. TaSior > 0
depends on the f(R)-gravity model. For the Einstein gravity (F = 1), one can immediately
find that the GSL (30) reduces to

T2

TAStot = W >

0, (31)
which shows that the GSL is always fulfilled throughout history of the universe. Within
the framework of Einstein’s gravity, it was also shown that the GSL in the presence of DE
is always satisfied during history of the universe [37]. The GSL of thermodynamics is a
universal principle governing the universe. As is well known, the GSL is a powerful tool
to set bounds on astrophysical and cosmological models [86]. The satisfaction of the GSL
of thermodynamics provides further confidence on the thermodynamical interpretation of
gravity in f(R) scenario based on the profound connection between gravity and thermody-
namics. Therefore, as one of the most important theoretical touchstones to examine whether
f(R)-gravity can be an alternative gravitational theory to GR, we examine the validity of
the GSL for some viable f(R) models in subsequent sections.
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5 Cosmological evolution

Here, we recast the differential equations governing the evolution of the universe in dimen-
sionless form which is more suitable for numerical integration. To do so, following [91] we
use the dimensionless quantities

t=Hot, H=—, R= 9
04y HO’ R Hgv (3 )
- [ = = Fr = Frr
=——, F=F FF=—7, = —, 33
Hg R H(;Q RR H(;4 ( )
where Hj is the Hubble parameter today. With the help of the above definitions and using
d _ d
—=—H(1 — 34
S= A+ ) (34)

one can rewrite the modified Friedmann equation (5) as follows

H? = Qo [(14+2)* +x(142)* | +(F—1) [H*— (142)HH'| - = (f —R) + (1+2)H*FR R, (35)

| =

where X = prady/Pmo = rady/m, and prime ’ denotes a derivative with respect to the
cosmological redshift z = 1 — 1.
To solve Eq. (35), we introduce new variables as [92]:

o _ H?

yg = = — — (1422 —x(1+2)% 36

we= 2o o (1 X1 42) (30)
and _
R

YR = —3(142)%. (37)
Qm,

Taking the derivative of both sides of Egs. (36) and (37) with respect to redshift z yield

(4 2)yly = m — . (38)
Uk = 9+ - g {m kg R)
~(F-1) {yﬁR — oy — %((1+z)3+2x(1+z)4>]}. (39)

Finally, inserting Eq. (39) into the derivative of Eq. (38) gives a second differential equation
governing yp(z) as [93]

(14 2)%yig + J1(1 + 2)ygy + Joyn + J3 = 0, (40)

where _
S 3 (ﬁ) 7 (41)
Jy= 2o F (42)

T 3H2FR
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Jy = —3(1+2)% — (R—f)]. (43

1 _
T {(1 —F) ((1 +2)% +2x(1+ 2)4) + 30
Equation (40) cannot be solved analytically. Hence, we need to solve it numerically. To do
so, we use the two initial conditions yu(z) = 3 and yjy(21) = 0 which come from the ACDM
approximation of f(R) model in high curvature regime. Notice z; is the proper redshift in
which we have RFR(z) < 10713

With the help of Egs. (14), (16), (17) and (36), one can obtain the evolutionary behaviors
of the matter density parameter, Q,,(z), DE density parameter, Qp(z), EoS parameter of
DE, wp(z), and effective EoS parameter, weg(z), in terms of yg and its derivatives as follows

B (1+2)3
Mn(2) = o e xA T (44)
_ Yu
In(z) = yu + (1+2)° + x(1+2)* w
wp(z)=—-1+ ig’z (;ﬁ) ) (46)
_ (1+2) [yn +3(1+2)* +4x(1 +2)°
Weft (2) = —1 + 3 [ Iy{H+(1+z)3+X(1+Z)4 } . )

Also from Egs. (18), (19) and (36) one can get the evolutions of the deceleration and jerk
parameters as

_ (1+2) [y +301+2)* +4x(1 +2)°
1=ty { (L 2P+ x(1 T 9 } 1)
L (1+2) [(1+ 2)yjf — 2yf; + 4x(1 + 2)3
i) =1+ 2 [ yH+(I;+Z)§{+X(1+Z)4 ] (49)

6 Viable f(R)-gravity models

The necessary conditions for having a viable f(R) model can be summarized as follows:

(i) F > 0, which keeps the positivity of the effective gravitational coupling constant and
avoids anti-gravity.

(ii) Fr > 0, which gives the stability condition of cosmological perturbations [31, 96, 97].
(iii) In the large curvature regime (R/Rp > 1), the f(R) model behaves like ACDM model.
It means that f(R) — R — 2A, where Ry is the Ricci scalar today. This is required for the
presence of the matter-dominated stage.

(iv) A stable late time de Sitter point; the condition which is required for this stability is,
0 < m(R = Rq) < 1[98], where m = £E8 and Ry = 2f(Rq)/F(Rq) is the value of the scalar
curvature at the de Sitter point. Note that the quantity m characterizes the deviation from
the ACDM model.

(v) Passing constraint from the equivalence principle and solar system test [99].

Since we are intersected in investigating the growth of structure formation and examin-
ing the GSL in f(R)-gravity, hence in what follows we consider some viable f(R) models
including the Starobinsky, Hu-Sawicki, Exponential, Tsujikawa and AB models which satisfy
the conditions (i) to (v).
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6.1 Starobinsky Model
The Starobinsky f(R) model is as follows [74]

R\
(1 + R_g) - 1] , (50)
where n > 0, X and Ry are constant parameters of the model. Following [100], we take n = 2
and A = 1. Note that in the high z regime (z ~ z), we have R/Rs > 1. This yields the

f(R) model (50) to behave like the ACDM model, i.e. f(R) = R — 2A. Consequently, the
constant parameter Ry is obtained as Ry = 180, HZ /.

F(R) = R+ AR,

6.2 Hu-Sawicki Model

This model was reconstructed based on the local observational data and presented by Hu
and Sawicki [92] as
o R()"
F(R) =R~ — =, (51)
C2 (E) + 1

where n > 0, ¢1,ce and Ry are constants of the model. For this model, we take n = 4,
c1 =125 x 1073, ¢y = 6.56 x 107° [91], and obtain Ry = 18co€, HE/c1.

6.3 Exponential Model
This model is defined by the following function [93],

f(R)=R— fR. (1 —e-z%), (52)

where 8 and Ry are two constants of the model. Here, R corresponds to the characteristic
curvature modification scale. Here, we take 3 = 1.8 [93] and obtain Ry = 18Q,,, H3/j3.

6.4 Tsujikawa Model

This model was originally presented in [73] as

S

F(R) = R — R, tanh (g), (53)

where \ and Ry are the model parameters. For this model, we obtain Ry = 180,  H3/\ and
set A =1 [101].

6.5 AB Model
This model was proposed by Appleby and Battye [16, 103] as

R € cosh (% — b)] ’ (54)

f(R)=—=+ =log

2 2 cosh(d)

where b is a dimensionless constant and € = Ry/[b+ log(2 coshb)|. The constant Ry can be
obtained at high curvature regime when the AB f(R) model (54) behaves like the ACDM
model, i.e. f(R)= R — 2A. This gives

R —36 Qo HS [+ log(2 cosh b)]
S lOg (1—t;nhb> '
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Here, we also set b = 1.4.

7 Numerical results

Here to solve Eq. (40) numerically, we choose the cosmological parameters {y,, = 0.24,
Op, = 0.76 and Qyaq, = 4.1 x 107°. As we have already mentioned, we use the two suitable
initial conditions yu(z;) = 3 and yj;(z1) = 0, in which 2; is obtained where RFr — 10713,
For the Starobinsky, Hu-Sawicki, Exponential, Tsujikawa and AB f(R) models, we obtain
z; =15.61, 13.12, 3.66, 3.52 and 3.00, respectively.

In addition, to study the growth rate of matter density perturbations, we numerically
solve Eq. (25) with the initial conditions g(zy,) = 1 and (dg/dIna)|,,, = 0, in which z,, is
obtained where Q,(zm,) = 1. For the aforementioned models, we obtain z, =14, 13, 12, 14
and 14.36, respectively.

With the help of numerical results obtained for yp(z) in Eq. (40), we can obtain the
evolutionary behaviors of H, R, q, Qum, Qp, wesr, wp and GSL for our selected f(R) models.
The results for the Starobinsky, Hu-Sawicki, Exponential, Tsujikawa and AB f(R) models
are displayed in Figs. 1-5. Figures show that: (i) the Hubble parameter and the Ricci scalar
decrease during history of the universe. (ii) The deceleration parameter g varies from an early
matter-dominant epoch (¢ = 0.5) to the de Sitter era (¢ = —1) in the future, as expected.
It also shows a transition from a cosmic deceleration g > 0 to the acceleration g < 0 in the
near past. The current values of the deceleration parameter for the Starobinsky, Hu-Sawicki,
Exponential, Tsujikawa and AB f(R) models are obtained as go = —0.56, —0.60, —0.56,
—0.57 and —0.60, respectively. These are in good agreement with the recent observational
constraint gy = —0.4370 12 (68% CL) obtained by the cosmography [105]. (iii) The density
parameters {p and €, increases and decreases, respectively, as z decreases. (iv) The
effective EoS parameter, weg, for the all models, starts from an early matter-dominated
regime (i.e. weg = 0) and in the late time, z — —1, it behaves like the ACDM model,
wet = —1. (v) The EoS parameter of DE, wp, for the all models starts at the phase of

a cosmological constant, i.e. wp = —1, and evolves from the phantom phase, wp < —1,
to the non-phantom (quintessence) phase, wp > —1. The crossing of the phantom divide
line wp = —1 occurs in the near past as well as farther future. At late times (z — —1),

wp approaches again to —1 like the ACDM model. Moreover, the present values of wp for
the Starobinsky, Hu-Sawicki, Exponential, Tsujikawa and AB f(R) models are obtained as
wp, = —0.94, —0.98, —0.93, —0.94 and —0.97, respectively. These values satisfy the present
observational constraints [2, 4].

(vi) The variation of the GSL shows that it holds for the aforementioned models from
early times to the present epoch. But in the farther future, the GSL for the Starobinsky, Hu-
Sawicki, Exponential, Tsujikawa and AB f(R) models is violated for —0.996 < z < —0.955,
—0.935 < z < —0.909, —0.897 < z < —0.751, —0.997 < z < —0.958 and —0.995 < z <
—0.950, respectively. To investigate this problem in ample detail, using Eq. (17) we rewrite
Eq. (30) in terms of weg as

) 119 3 F F
TaStot = e 5(1 + wer )2 F + 5(1 + Weﬂ)ﬁ —(1+ 3Weﬁ“)m , (55)

which shows that in the farther future z — —1 when weg — —1 (see Figs. 1-5), we have

i

TaStor = 5o

(56)
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According to Eq. (56), the validity of GSL, i.e. TaSior > 0, depends on the sign of F. In
Figs. 1-5, we plot the variation of F'/(2H?) versus z in the farther future for the selected
f(R) models. Figures confirm that when the sign of F changes from positive to negative due
to the dominance of DE over non-relativistic matter then the GSL is violated. As we know
that the natural tendency of any system is to evolve toward thermodynamic equilibrium
which is characterized by a state of maximum entropy. In the context of an ever expanding
FRW universe, this translates in that the entropy of the apparent horizon plus that of
matter and fields enclosed by it must fulfill the GSL of thermodynamics, i.e. Ta Sior > 0.
Thus, the violation of the GSL in a f(R) model means that the model does not approach
thermodynamic equilibrium at late times [106]. Of course, as we already mentioned, the GSL
can be used as a powerful tool to set bounds on cosmological f(R) models [86]. It means
that we can set the parameters of a given f(R) model so that the GSL holds throughout
the evolution of the universe. Although the parameters used for each model in Figs. 1-5
are the viable ones, by more fine tuning the model parameters the GSL can be held and
consequently the model approaches thermodynamic equilibrium at late times. For instance,
in AB f(R) model by choosing the model parameter as b = 1.3, the GSL is always satisfied
from early times to the late cosmological history of the universe.

In Figs. 6-10, we plot the evolutions of RFR, Get/G, g and the growth factor f versus z
for the selected f(R) models. Figures show that: (i) RFgr goes to zero for higher values of z
which means that the f(R) models at high z regime behave like the ACDM model. (ii) The
screened mass function Geg/G for a given wavenumber k is larger than one which makes
a faster growth of the structures compared to the GR. However, for the higher redshifts,
the screened mass function approaches to unity in which the GR structure formation is
recovered. Note that the deviation of Geg/G from unity for small scale structures (larger k)
is greater than large scale structures (smaller k). (iii) The linear density contrast relative to
its value in a pure matter model g = §/a starts from an early matter-dominated phase, i.e.
g ~ 1 and decreases during history of the universe. For a given z, g in the all f(R) models
is greater than that in the ACDM model. (iv) The evolution of the growth factor f(z) for
f(R) models and ACDM model together with the 11 observational data of the growth factor
listed in Table 1 show that for smaller structures (larger k), the all f(R) models deviate
from the observational data. But for larger structures (smaller k), the growth factor in the
all f(R) models, very similar to the ACDM model, fits the data very well.
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Figure 1: The variations of the Hubble parameter H/Hj, the Ricci scalar R/HZ, the de-
celeration parameter ¢, the density parameter (), the effective EoS parameter weg , the
EoS parameter of DE wp, the GSL, GTaSior and % versus redshift z for the Starobinsky
model. Auxiliary parameters are Q,, = 0.24, Qp, = 0.76, Qpaq, = 4.1 x 1075, A = 1 and
n=2.
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Figure 2: Same as Fig. 1 but for the Hu-Sawicki model. Auxiliary parameters are Q,, =
0.24, Qp, = 0.76, Qrag, = 4.1 x 1075, ¢; = 1.25 x 1073, ¢3 = 6.56 x 1075 and n = 4.
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Figure 3: Same as Fig. 1 but for the Exponential model. Auxiliary parameters are Q,,, =
0.24, Qp, = 0.76, Qyaq, = 4.1 x 1075 and 3 = 1.8.
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Figure 4: Same as Fig. 1 but for the Tsujikawa model. Auxiliary parameters are Q,,,, = 0.24,

Qp,

= 0.76, Qyaq, = 4.1 x 107° and A = 1.
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Figure 5: Same as Fig. 1 but for the AB model. Auxiliary parameters are ,, = 0.24,
Qp, = 0.76, Qraq, = 4.1 x 1077 and b = 1.4.
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Figure 6: The variations of RFg, the screened mass function Geg/G, the linear density
contrast relative to its value in a pure matter model g = d/a and the growth factor f(z),
versus redshift z for the Starobinsky model.
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Figure 9: Same as Fig. 6 but for the Tsujikawa model.
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Figure 10: Same as Fig. 6 but for the AB model.

Table 1: The observational data for the linear growth rate fops(2).

z 0.15 022 032 035 041 055 060 077 078 1.4 3.0
fors 051 0.60 0654 070 070 075 0.73 091 070 090 1.46
o 011 010 0.18 0.8 0.07 0.8 007 036 008 024 0.29
Ref. [107] [110] [111] [112] [110] [113] [110] [114] [110] [115] [L16]

8 Conclusions

Here, we investigated the evolution of both matter density fluctuations and GSL in some
viable f(R) models containing the Starobinsky, Hu-Sawicki, Exponential, Tsujikawa and AB
models. For the aforementioned models, we first obtained the evolutionary behaviors of the
Hubble parameter, the Ricci scalar, the deceleration parameter, the matter and DE density
parameters, the EoS parameters and the GSL. Then, we explored the growth of structure
formation in the selected f(R) models. Our results show the following.

(i) All of the selected f(R) models can give rise to a late time accelerated expansion phase
of the universe. The deceleration parameter for all models shows a cosmic deceleration ¢ > 0
to acceleration g < 0 transition. The present value of the deceleration parameter takes place
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in the observational range. Also, at late times (2 — —1), it approaches a de Sitter regime
(i.e. ¢ = —1), as expected.

(ii) The effective EoS parameter weg for the all models starts from the matter dominated
era, werr =~ 0, and in the late time, z — —1, it behaves like the ACDM model, weg — —1.

(i) The evolution of the EoS parameter of DE, wp, shows that the crossing of the
phantom divide line wp = —1 appears in the near past as well as farther future. This is a
common physical phenomena to the existing viable f(R) models and thus it is one of the
peculiar properties of f(R) gravity models characterizing the deviation from the ACDM
model [101].

(iv) The GSL is respected from the early times to the present epoch. But in the farther
future, the GSL for the all models is violated in some ranges of redshift. The physical reason
why the GSL does not hold in the farther future is that the sign of F' changes from positive
to negative due to the dominance of DE over non-relativistic matter.

(v) For all models, the screened mass function G.g/G is larger than 1 and in high z
regime goes to 1. The deviation of Geg/G from unity for larger k (smaller structures) is
greater than the smaller k (larger structures). The modification of GR in the framework of
f(R)-gravity gives rise to an effective gravitational constant, Geg, which is time and scale
dependent parameter in contrast to the Newtonian gravitational constant.

(vi) The linear density contrast relative to its value in a pure matter model, g(a) = én/a,
for all models starts from an early matter-dominated phase, g(a) = 1, and decreases during
history of the universe.

(vii) The evolutionary behavior of the growth factor of linear matter density perturba-
tions, f(z), shows that for all models, the growth factor for smaller k (larger structures) like
the ACDM model fits the data very well.

It is worth noting that the f(R)-gravity for very small wavenumbers (larger structures)
is completely indistinguishable from ACDM. The main effect of the f(R) theory is in quasi-
linear regimes, large wavenumbers (smaller structures) where the growth rate has a strong
scale dependence and deviates from the standard ACDM case. Also, for any given wavenum-
ber corresponding to the larger /smaller structures, the f(R) model can have a growth func-
tion identical to A’s at high redshift. Future surveys of the large scale structure such as
eBOSS, DESI, Euclid, or WFIRST [26] may reveal the growth index in terms of wavenum-
ber of the structures and help the f(R)-gravity models to be clearly distinguished from the
ACDM model.
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