Hadoop, a distributed framework for Big Data

By: Zahra Rezaeli
z.rezaei2010@gmail.com

2017 Big Data & Frameworks 1

+ Hadoop - Basics

+ HDFS

+ Yarn

+ MapReduce

+ Spark

+ Related Apache sub-projects (Pig, HBase,Hive)

2017 Big Data & FrameWorks

=1 Apache Hadoop

- A framework for storing & processing Petabyte of data using
commodity hardware and storage

- Apache project
- Implemented in Java

- Community of contributors Is growing

- Yahoo: HDFS and MapReduce

- Powerset. HBase

- Facebook: Hive and FairShare scheduler
- IBM: Eclipse plugins

2017 Big Data & FrameWorks

=1 What is Hadoope?

+ Software platform that lets one easily write and run applications that process vast
amounts of data. It includes:

+ — MapReduce - offline computing engine
"8 — HDFS - Hadoop distributed file system
- — HBase (pre-alpha) — online data access

+ Yahoo! is the biggest contributor

2017 Big Data & FrameWorks 4

+ Here's what makes it especially useful:
+ Scalable: process petabytes.
+ Economical: processing across clusters (in thousands).

+ Efficient: By distributing the data, it can process it in parallel on the nodes where
the data is located.

+ Reliable: It automatically maintains multiple copies of data and automatically
redeploys computing tasks based on failures.

2017 Big Data & FrameWorks 5

+ Apache top level project, open-source implementation of frameworks for reliable,
scalable, distributed computing and data storage.

+ It is a flexible and highly-available architecture for large scale computation and
data processing on a network of commodity hardware.

ihad a/o p

2017 Big Data & FrameWorks 6

+ Designed to answer the question: “How to process big data with reasonable cost
and time?”

2017 Big Data & FrameWorks 7

(7
= =

i History of Hadoop

+ Started as a sub-project of Apache Nutch
+ Nutch’s job is to index the web and expose it for searching
+ Started by Doug Cutting

+ In 2004 Google publishes Google File System (GFS) and MapReduce framework
papers

+ The Google File System - 2003

2017 Big Data & FrameWorks

=4
CE 3

*

k
A RTWTCIMD

History of Hadoop

The Google File System

2003 Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung
Google*

MapReduce: Simplified Data Processing on Large Clusters

2004 Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @ google.com

Google, Inc.

Bigtable: A Distributed Storage System for Structured Data R p Q ‘ H E
ay O rey De il allach
ar e

- BRASE

2006

2017 Big Data & FrameWorks

ket
A RTWNCE 2

*

2017

History of Hadoop

« 2008 - Hadoop Wins Terabyte Sort Benchmark (sorted 1 terabyte
of data in 209 seconds, compared to previous record of 297 seconds)

« 2009 - Avro and Chukwa became new members of Hadoop
Framework family

« 2010 - Hadoop's Hbase, Hive and Pig subprojects completed, adding
more computational power to Hadoop framework

« 2011 - ZooKeeper Completed

« 2013 - Hadoop 1.1.2 and Hadoop 2.0.3 alpha.
- Ambari, Cassandra, Mahout have been added

Big Data & FrameWorks

10

And Now

« Hadoop:

* an open-source software framework that supports data-
Intensive distributed applications, licensed under the
Apache v2 license.

« Goals / Requirements:

Abstract and facilitate the storage and processing of
large and/or rapidly growing data sets
» Structured and non-structured data
« Simple programming models
« High scalability and availability
« Use commodity (cheap!) hardware with little redundancy

* Fault-tolerance

* Move computation rather than data

2017 Big Data & FrameWorks

e

e

e = —y

= —_—— e =
b = — LI
LR N N J _®

. O m . '/'-\

i} bl | ! o :(v X

) .':: "‘. /" ‘; = | X .:J‘\‘. ': » = \ ”

u : . 1 1 o=y | P>y y

um G P e e € G ®

amazoncom A
-
facebook NUIN lost-fm
e SoC sic revolution

Linked 3} YaHoO!

Source: http://wiki.apache.org/hadoop/PoweredBy

2017 Big Data & FrameWorks

12

=4 Hadoop system principles
+ Scale-Out rather than Scale-Up

+ Bring code to data rather than data to code

+ Deal with failures — they are common

+ Abstract complexity of distributed and concurrent applications

2017 Big Data & FrameWorks

13

=1 Code to Data

+ Traditional data processing architecture
+ Nodes are broken up into separate processing and storage nodes connected by

high-capacity link

+ Many data-intensive applications are not CPU demanding causing bottlenecks in

network

2017

Load Data

Processing Storage
Node Save Results Node
_ Load Data
Processing Storage
Node Save Results _ Node

Risk of bottleneck

Big Data & FrameWorks

14

BRING CODE TO DATA

Hadoop co-locates processors and storage
Code is moved to data (size is tiny, usually in KBs)
Processors execute code and access underlying local storage

Bring Code to Data

Hadoop Node Hadoop Node Hadoop Cluster

2017 Big Data & FrameWorks

15

=1 Failures are Common

+ Given a large number machines, failures are common
+ Large warehouses may see machine failures weekly or even daily

+ Hadoop is designed to cope with node failures
Data is replicated
Tasks are retried

2017 Big Data & FrameWorks

16

= Abstract Complexity

+ Frees developer from worrying about systemlevel challenges
H processing pipelines, data partitioning, code distribution

+ Allows developers to focus on application development and business logic

2017 Big Data & FrameWorks

17

= Distribution Vendors

+ Cloudera Distribution for Hadoop (CDH)

+ MapR Distribution

+ Hortonworks Data Platform (HDP)

+ Apache BigTop Distribution

2017

Big Data & FrameWorks

“cloudera
MAER

TECHNOLOGIES

HortanOfks

18

ARTIFICTATSSENEFEI G ENCE

BATCH INTERACTIVE ONLINE | IN-MEMORY HPC MPI
— (MapReduce) (Tez) (HBase) (Spark) (OpenMPI)

YARN (Cluster Resource Management)

% HDFS2 (Redundant, Reliable Storage)

2017

AR']‘IW_ 508

Bl Applications
(query, analytics, reporting, statistics)

Orchestration Framework

Data Storage Framework Data Processing Framework
(HDFS) (MapReduce)
Operating System (LinuXx)
Dell PE-R, PE-C Servers

2017 Big Data & FrameWorks

Deployment

<
0
>
o
9]
0
o
<
Q
3
L
8
o
0

Security

Management

20

=1 Hadoop projects

+ HDFS : A distributed filesystem that runs on large clusters of commodity
machines

+ MapReduce : A distributed data processing model

+ Hbase : A distributed, column-oriented database.

+ Hive : A distributed data warehouse. Hive manages data stored in HDFS and
provides a query language based on SQL

2017 Big Data & FrameWorks

21

+ Pig : A data flow language and execution environment for exploring very large
datasets

+ ZooKeeper : A distributed, highly available coordination service.

2017 Big Data & FrameWorks

22

A Hadoop Distributed File System

+ Appears as a single disk

+ Runs on top of a native filesystem
m Ext3,Ext4,...

+ Based on Google's Filesystem GFS

+ Fault Tolerant
m Can handle disk crashes, machine crashes, etc...

+ portable Java implementation

2017 Big Data & FrameWorks

23

A HDFS is Good for...

+ Storing large files
m Terabytes, Petabytes, etc...
m Millions rather than billions of files
m 100MB or more per file
+ Streaming data
m Write once and read-many times patterns
m Optimized for streaming reads rather than random reads

+ “Cheap” Commodity Hardware
m No need for super-computers, use less reliable commodity hardware

2017 Big Data & FrameWorks

24

=4 HDF'S is not so good for ...

+ Low-latency reads

m High-throughput rather than low latency for small chunks of data
mHBase addresses this issue

+ Large amount of small files

m Better for millions of large files instead of billions of small files
mFor example each file can be 100MB or more

+ Multiple Writers
m Single writer per file

2017 Big Data & FrameWorks

25

HDFS Architecture

+ Master-Slave Architecture

+ HDFS Master “Namenode”

Manages all filesystem metadata

File name to list blocks * location mapping

File metadata (i.e. “inode”)

Collect block reports from Datanodes on block locations
Controls read/write access to files

Manages block replication

+ HDFS Slaves “Datanodes”

m Notifies NameNode about block-IDs it has

m Serve read/write requests from clients

m Perform replication tasks upon instruction by namenode
m Rack-aware

2017 Big Data & FrameWorks

26

2017

NameNode:

« Stores metadata for the files, like the directory structure of a
typical FS.

« The server holding the NameNode instance is quite crucial,
as there is only one.

« Transaction log for file deletes/adds, etc. Does not use

transactions for whole blocks or file-streams, only metadata.

« Handles creation of more replica blocks when necessary
after a DataNode failure

Big Data & FrameWorks

27

2017

DataNode:

« Stores the actual data in HDFS
« Can run on any underlying filesystem (ext3/4, NTFS, etc)
* Notifies NameNode of what blocks it has

« NameNode replicates blocks 2x in local rack, 1x elsewhere

HDFS Architecture

+ Secondary Namenode

m Performs house keeping work so Namenode doesn’t have to
m Requires similar hardware as Namenode machine

m Not used for high-availability — not a backup for Namenode

2017 Big Data & FrameWorks

29

HDFS Architecture

Metadata (Name, replicas, ...):
Veta dat_a_ops;"[Namenode /homeffoo/data, 3, ...

Block ops
Read Datanodes Datanodes
B O = Replication oo =
] ‘. Blocks
- \ \. J
Rack 1 Write Rack 2

'f?-‘ *,/’

o S
-mfwm‘c.ﬁ 3

i

*®

hamlet.txt file =

Files and Blocks

Block #1 (B1) + Block #2 (B2)

SAME BLOCK

B1 B2
B2

Datanode Datanode

Rack #1

2017

Namenode
Management
Node
B1 B2
B1
Datanode Datanode Datanode
Rack #N

Big Data & FrameWorks

31

Samad REPLICA MANGEMENT

+ A common practice is to spread the nodes across multiple racks
+ improve data reliability, availability, and network bandwidth utilization
+ Namenode determines replica placement

I
— Rack 0 — Rack 1

pNo2 [DN1o][DN11) [DN12)

2017 Big Data & FrameWorks

HDFS Component Communication

“NameNode > . ________________

Handshake message upon startup

|
A |
‘handshake _ . '
S— - verify namespace ID and sw version |
9 \ - assign permanent storage ID |
\ |
I 1
| | Block report every hour |
‘block report!‘{ l |
- block id, generation stamp, length l
DataNode 5 ,
|

Heartbeat message every 3 seconds
heartbeat

| |
| |
, - used/max capacity, # transfers |
|
|
|

no heartbeat for 10 mins—> replicate

2017 Big Data & FrameWorks

=1 handshake

+ During startup each DataNode connects to the NameNode and performs a
handshake

+ The purpose is to verify the namespace ID and the software version

+ After the handshake the DataNode registers with the NameNode

2017 Big Data & FrameWorks

34

=1 block report

+ A block report contains the block id, the length for each block replica

+ The first is sent immediately after the DataNode registration

+ Subsequent block reports are sent every hour.

2017 Big Data & FrameWorks

35

+ During normal operation DataNodes send heartbeats to the NameNode to confirm
that the DataNode is operating and the block replicas it hosts are available.

+ Heartbeats from a DataNode also carry information about:
m Total storage capacity
m Fraction of storage in use

+ The default heartbeat interval is three seconds

2017 Big Data & FrameWorks 36

4 Resd,Write, Append,Delete
+ Using the FileSystem API:

+ an open() method to get the input stream for a file

+ The create() methods for writing

+ append to an existing file using the append() method

+ Use the delete() method on FileSystem to permanently remove files or directories

2017 Big Data & FrameWorks 37

ARTIFICTAT

2017

‘Data From HDFS

1: open Distributed A,
HDES FileSystem
dient |.3:read
5-"{]'5.;;‘:": FSData
: InputStream
client JYM
client node

4: read

v

DataNode

datanode

DataNode

datanode

2: get block locations

NameNode

namenode

DataMode

datanode

Big Data & FrameWorks

ata To HDFS

S 2:create
- 1: create Distributed B U —
Hm : u.-nu-...uuu F“ES){SIE“\ 7: (omp|ete
dim I..S.:.w"te TR R IR AR RPN

FSData
6: dose B OutputStream
dient JYM &
cdient node :
4: write packet 5: ack packet
N %5
v
Pipeline of DataNode [N DataNode
datanodes

datanode 7 datanode

>

d NameNode

namenode

DataNode

datanode

2017

Big Data & FrameWorks

+ Hadoop MapReduce Classic

- F F F F F F F F F ¢

MapReduce Classic Limitations:

Scalability

Maximum Cluster size — 4,000 nodes

Maximum concurrent tasks — 40,000

Coarse synchronization in JobTracker

Availability

* Failure kills all queued and running jobs

*Hard partition of resources into map and reduce slots
* Low resource utilization

Lacks support for alternate paradigms and services
Iterative applications implemented using MapReduce are 10x slower

2017 Big Data & FrameWorks

40

Single Use System
Batch Apps

HADOOP 1.0

MapReduce

(cluster resource management
& data processing)

‘Next-Gen Platform

Multi Purpose Platform
Batch, Interactive, Online, Streaming, ...

HADOOP 2.0

MapReduce 1 Others

(data processing) (data processing)

L A |

(cluster resource management)

2017

Big Data & FrameWorks

- + & #

YARN Architecture and Concepts

Application

Application is a job submitted to the framework
Example — Map Reduce Job

Container

Basic unit of allocation

Fine-grained resource allocation across multiple resource types (memory, cpu, disk, network,
gpu etc.)

* container_0 =2GB, 1CPU

 container_ 1=1GB, 6 CPU

* Replaces the fixed map/reduce slots

2017 Big Data & FrameWorks

42

RTTFTCIAT SSMBAN TG LN CE
S FETR

Node
- Manager

Node
Manager | |

MapReduce Status ———

Job Submission --=----- >

Node Status ——=——3»
Resource Request

Node |
Manager | |

2017

Smmad Hadoop Architecture

HDFS

Client

All name space edits
logged to shared NFS
storage; single writer

(fencing)

Read edit logs and applies
to its own namespace

Resource
Manager

Secondary
Name MNooe

2017 Big Data & FrameWorks

= What is MapReduce?

+ Parallel programming model meant for large clusters
User implements Map() and Reduce()

+ Parallel computing framework

+ Libraries take care of EVERYTHING else

+ Parallelization

+ Fault Tolerance

+ Data Distribution

+ Load Balancing

+ Useful model for many practical tasks (large data)

2017 Big Data & FrameWorks

45

=4 Functional Abstractions Hide Parallelism

+ Map and Reduce

+ Functions borrowed from functional programming languages (eg. Lisp)
+ Map()

+ Process a key/value pair to generate intermediate key/value pairse

+ Reduce()

+ Merge all intermediate values associated with the same key

2017 Big Data & FrameWorks

46

2017 Big Data & FrameWorks

ol
.mwjgp

N
f

*®

2017

Distributed Processing

Hi how are you

(

Hello Hello how are you

are [1 1]

Hello [1 1]
Hi [1]
are 1 how [1 1]
Hello 1 ou [1 1
Hello 1
how 1

You 1

Big Data & FrameWorks

are 2
Hello 2
Hi 1
how 2
you 2

48

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result

2017

n Large Clusters

<+ Motivation and Demand:

m Tend to be very short, code-wise
M Represent a data flow

Key/Value Pairs J

Load a large set of records onto a set of machines

Extract / transform something of interest from each record "Map" J

Shuffle intermediate results between the machines

Aggregate intermediate results "Reduce”]

Store end result

be?

A
.Akwrgﬁ

2

!

Map-Reduce (Cont.)

*®

Index: Data Flow

Page A A map output
This : A
This page page : A Reduced output
containg so == CONtAINS: A .
- contains: A, B
much text 80 A
much: A much: A
text: A My: B
page : A, B
B map output so:A
Page B text: A, B
My: B This : A
My page page : B too: B
contains text == contains: B
too text: B
too: B

2017 Big Data and Frameworks (By: Habibzadeh)

2017

Map-Reduce (Cont.)

PLLL L L L PO L L L L Ll § P—

dog cat bird : dog, 1 —+—4» dog, 1 -:—{9 dog, 4
E E cat,1 dog,1 | |
pets.txt _ :
/ ™ bird, 1 dog, 1 | |
dog cat bird : dog,1 | |
dog cat bird : : :

dog dog cat \ dog cat bird : dog, 1 cat, 1 —{—5 cat, 3
% cat, 1 cat, 1 : :
™ bird, 1 cat, 1 1 :
I L

bird, 1-—p bird, 2

bird, 1

dog dog cat dog, 1
dog, 1

- - L o e e mem d A - ——— -

Map Shuffle Reduce

e = o
P ———

Big Data and Frameworks (By: Habibzadeh)

pet_freq.txt

dog, 4
cat, 3
bird, 2

52

L oV
.mwcf 2

Map-Reduce (Cont.)

+ Each step has one Map phase and one Reduce phase
m Convert any into MapReduce pattern
+ Great solution for one-pass computations

m Not very efficient for Multi-pass computations and algorithms

‘&

2017 Big Data and Frameworks (By: Habibzadeh)

53

= Map/Reduce in Python

import sys

for line in sys.stdin:

line = line.strip()

words = line.split()

for word in words:

print '%s\t%s’ % (word,1)

2017 Big Data & FrameWorks

54

=1 Word count

from operator import itemgetter
import sys

current_word = None
current_count=0

word = None

for line in sys.stdin:

line = line.strip()

word, count = line.split(\t', 1)

2017

Big Data & FrameWorks

55

count = int(count)

except ValueError:

continue

if current_word == word:

current_count += count

else:

if current_word:

print '%s\t%s' % (current_word, current_count)
current_count = count

current_word = word

if current_word == word:

print "%s\t%s' % (current_word, current_count)

2017

Big Data & FrameWorks

56

Hadoop Framework

+ Features :

m Open Source Framework for Processing Large Data

m Work on Cheap and Unreliable Clusters

m Known in Companies who deal with Big Data Applications
m Compatible with Java, Python and Scala

e Map e Deals with fault tolerance

e Reduce e Assign workers to map and
reduce tasks

e Moves processes to data

e Shuffles and sorts intermediate
data

e Deals with errors

2017 Big Data and Frameworks (By: Habibzadeh)

57

Hadoop Framework (Cont.)

m MapReduce Framework
mAssign work for different nodes

m Hadoop Distributed File System (HDFS)
m Primary storage system used by Hadoop applications.

m Copies each piece of data and distributes to individual nodes
Name Node (Meta Data) and Data Nodes (File Blocks)
Redundant information (Three times by default)

Machines in a given cluster are cheap and unreliable
Decreases the risk of catastrophic failure
Even in the event that numerous nodes fail

m Links together the file systems on different nodes to make an integrated big file system
(Parallel Processing)

2017 Big Data and Frameworks (By: Habibzadeh)

58

2017

Hadoop Framework (Cont.)
+ Hadoop V.2 : Hadoop NextGen MapReduce (YARN)

\ User programs are copied to all nodes ‘

Job
| Tracker |

Name
Node

s J

/
/

\ s

Pig Hive | HBase | Storm | Solr Spark Cas‘;“"“g Other
Scalding
YARN
HDFS

Big Data and Frameworks (By: Habibzadeh)

59

+ Hadoop Programming

m Java
mFull control of MapReduce , Cascading (Open Java Library)

m Python , Scala, Ruby
+ Data Retrieval / Query Language

m Hive
mSQL- Like Language @

m Pig ~=HIVE
mData Flow Language (Simple and Out of Small Steps)
| Scalding

mLibrary built on top of Scala (Elegant Model)

2017 Big Data and Frameworks (By: Habibzadeh)

60

\RTTFICTAT TISaiE

.:tforﬁvs & tools for big data analytics in healthcare

Platform/Tool Description
The Hadoop

Distributed HDFS enables the underlying storage for the Hadoop cluster. it divides the data into smaller parts and
File System distributes it across the various servers/nodes.
(HDFS)
MapReduce provides the interface for the distribution
MapReduce

of sub-tasks and the gathering of outputs. When

tasks are executed, MapReduce tracks the processing of each server/node.

PIG and PIG

Pig programming language is configured to assimil,
Latin (Pig and

ate all types of data (struc:ured/unstructured. etc.). It
s comprised of two key modules: the language itse

s
If, called PiglLatin, and the runtime version in which
PiglLatin) the PiglLatin code is executed. i
Hive is a runtime Hadoop support architecture that leverages Structure Query Language (SQL) with the
Hive Hadoop platform. It permits SQL pProgrammers to develop Hive Query Language (HQL) Statements akin
Lo typical SQL Statements.
Jag! Jaqglis a functional, declarative query language designed to Process large data sets. To facilitate parallel
processing, Jaql converts “high-level queries into Tow-lever queries” consisting of MapReduce tasks.
Zookeeper allows a centr /
Zookeeper cluster of servers. Big o) ’207 i st yarious services, pProviding Synchronization across a
S. Big data ana Ytlics applications utilize these servi
ce i
across big clusters. S to coordinate parallel processmg
HBase HBase js 5 colurnn—oric-nted database Mmanagement s
approach.

ystem that sits on top of HDFs.

It uses a non-sqQL
Cassandra

failure (ht(p.‘//cn.
Oozje

: NosqQL System
low and ¢ i
moie ans : Oordination among th
— - Source;;rqect IS used widely for text analytics/s .
ojects. Irs Sco,]
Pk Pe includes full text inde
Avro
Avro facilitar,
es data sonahzauon Services Vcrs;omn
an

hou(Mahoyr s yer another Apache Project = : S =

“ 2Cd/able m, e learn; ey

|
2017 Big Data and Frameworks (|

== Big Data Programming

+ R - Java- Python and Scala (Commonly Used)

+ Three References : (Recommended to Read)
B https://www.linkit.nl/knowledge-base/177/4 most used languages in big data projects Java

B https://www.linkit.nl/knowledge-base/226/4 most used languages in big data projects R

W https://www.linkit.nl/eng/knowledge-
base/196/4 most used languages in big data projects Python

P £ = A

Java ~ Scala o,

2017 Big Data and Frameworks (By: Habibzadeh)

62

https://www.linkit.nl/knowledge-base/177/4_most_used_languages_in_big_data_projects_Java
https://www.linkit.nl/knowledge-base/226/4_most_used_languages_in_big_data_projects_R
https://www.linkit.nl/eng/knowledge-base/196/4_most_used_languages_in_big_data_projects_Python

=4 Apache Spark Framework

+ Spark Features (More than Distributed Processing)

W Ease of use, and sophisticated analytics

H In-memory data storage and near real-time processing

m Holds intermediate results in memory

| Store as much as data in memory and then goes to disk

+ Spark vs Hadoop
m On top of existing HDFS Seark
m Data sets that are diverse in nature (Text, Videos, ...)
m Variety in source of data (Batch v. real-time streaming data).

m 100 times faster in memory, 10 times faster when running on disk.

2017 Big Data and Frameworks (By: Habibzadeh)

63

=i Apache Spark Framework (Cont.)

BlinkDB
(Aporoximate
SaL)

Spark MLLib GraphX

%ff‘:aming (Machine (Graph SparkR
aming,) learning) Computation) (R on Spar, k)

Spark Core Engine

2017 Big Data and Frameworks (By: Habibzadeh)

Smend Apache Spark Framework (Cont.)

*®

+ Compatible with Java, Scala and Python

+ Perform Data Analytics and Machine Learning
m SQL Queries, Streaming Data

m Machine Learning and Graph Data Processing
mSpark MLIib, Spark’s Machine Learning library

+ Spark and data stored in a Cassandra database
m (Case Study)

2017 Big Data and Frameworks (By: Habibzadeh)

65

Apache Flink

+ Apache Flink is an open source platform

m Distributed stream and batch data processing.”
m https://flink.apache.org/

+ The definition in wikipedia:
m https:/len.wikipedia.org/wiki/Apache_Flink

2017 Big Data and Frameworks (By: Habibzadeh)

66

https://flink.apache.org/
https://en.wikipedia.org/wiki/Apache_Flink

s Apache Flink (Cont.)

+ written in Java and Scala, consists of:

mBig data processing engine:

mDistributed and scalable streaming dataflow engine
+ Several APIs in Java / Scala / Python:

mDataSet API - Batch processing
mDataStream API — Real-Time streaming analytics

+ Domain-Specific Libraries:
mFlinkML: Machine Learning Library for Flink
mGelly: Graph Library for Flink
mTable: Relational Queries
mFlinkCEP: Complex Event Processing for Flink

2017 Big Data and Frameworks (By: Habibzadeh) 67

Table
Gelly

Runtime Distributed
Streaming Dataflow

Hadoop M/R

2017 Big Data and Frameworks (By: Habibzadeh)

W X Y Z W X Y Z
A 45| 20| Alzzos 15 1.2%1.0 0.8
Q 0 0 35) . 1'_4-'0_;; X 17 ..D.g 1.:1 | 04
Sc 5.0 2.0 - Clisto
Delta , I Wl I i i
Stock qupbq of qmupbu Tumbhng D 3.5 401 1.0 D208
Siream — o Warning —>| Count —>| 30sec Sum
symbal i symbol | window Rating Matrix Muas‘terirx hlqtaﬁ:x
N
_ _ Machine Learning
Real-Time stream processing
DataSet API DataStream API
Batch Processing Stream Processing

Runtime
Distributed Streaming Dataflow

Graph Analysis

Batch Processing

2017 Big Data and Frameworks (By: Habibzadeh)

69

d Cloud

4+ Cloud Computing Platform & Services
m (Cloudera, Hortonworks, MapR, Azure)

=4 Apache Spark

+ Processing engine; instead of just “map” and “reduce”, defines a large set of
operations (transformations & actions)

+ Operations can be arbitrarily combined in any order

+ Open source software

+ Supports Java, Scala and Python

+ Key construct: Resilient Distributed Dataset (RDD)

2017 Big Data & FrameWorks

71

2017

map (func)
flatMap(func)
filter(func)
groupByKey()
reduceByKey(func)
mapValues(func)
sample(...)
union(other)
distinct()
sortByKey()

reduce(func)
collect()

count()

first()

take(n)
saveAsTextFile(path)
countByKey()
foreach(func)

Big Data & FrameWorks

=1 Sample Spark transformations

+ map(func): Return a new distributed dataset formed by passing each element of
the source through a function func.

+ filter(func): Return a new dataset formed by selecting those elements of the
source on which func returns true

+ union(otherDataset): Return a new dataset that contains the union of the
elements in the source dataset and the argument.

2017 Big Data & FrameWorks 73

=1 Sample Spark Actions

+ intersection(otherDataset): Return a new RDD that contains the intersection of
elements in the source dataset and the argument.

+ distinct([numTasks])): Return a new dataset that contains the distinct elements of
the source dataset

+ join(otherDataset, [numTasks]): When called on datasets of type (K, V) and (K, W),
returns a dataset of (K, (V, W)) pairs with all pairs of elements for each key. Outer
joins are supported through leftOuterJoin, rightOuterJoin, and fullOuterJoin.

2017 Big Data & FrameWorks 74

=1 Sample Spark Actions

+ reduce(func): Aggregate the elements of the dataset using a function func (which
takes two arguments and returns one). The function should be commutative and
associative so that it can be computed correctly in parallel.

+ collect(): Return all the elements of the dataset as an array at the driver program.
This is usually useful after a filter or other operation that returns a sufficiently
small subset of the data.

+ count(): Return the number of elements in the dataset.

2017 Big Data & FrameWorks 75

\RTTFTCTAT TSEREEIEI G 1N CE

Compute AP| (Scala,
Interface BREVENRLUEL

Distributed

Storage (HDFS, Computing
Data Other Formats) (Stand-alone, Management

Mesos, YARN)

Fault tolerance because an RDD know how to recreate and re-compute the datasets.
RDDs are immutable.

Create RDD > Transformation

r.
Lineage ™ R QD .

> Action

Y
Result

2017 Big Data & FrameWorks

=1 Hadoop and Spark

Map & Reduce -> suitable for on- multi-step data pipelines using

pass computations directed acyclic graph (DAG) pattern.
Clusters are hard to set up and supports in-memory data sharing
manage across DAGs.

need to integrate with Mahout Spark as an alternative to Hadoop
(Machine Learning) and Storm MapReduce

(Streaming data processing)

2017 Big Data & FrameWorks

Gray sort competition: Winner Spark-based (previously MR)

Sort benchmark, Daytona Gray: sort of 100 TB of data (1 trillion records)

Data Size 102.5TB 100 TB
Elapsed Time 72 mins 23 mins o R
Cores 50400 physical 6592 virtualized 3x faster
: ith 1/10
Cluster disk 3150 GB/s wi
throughput (est.) 618 GB/s # of nodes
Network dedicated data virtualized (EC2) 10Gbps
center, 10Gbps network
Sort rate 1.42 TB/min 4.27 TB/min
Sort rate/node 0.67 GB/min 20.7 GB/min

http://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html

2017 Big Data & FrameWorks

79

=i Spark vs. Hadoop MapReduce

+ Performance: Spark normally faster but with caveats

+ Spark can process data in-memory; Hadoop MapReduce persists back to the disk after a map
or reduce action

+ Spark generally outperforms MapReduce, but it often needs lots of memory to do well; if there
are other resource-demanding services or can'’t fit in memory, Spark degrades

+ MapReduce easily runs alongside other services with minor performance differences, & works
well with the 1-pass jobs it was designed for

+ Ease of use: Spark is easier to program
+ Data processing: Spark more general
+ Maturity: Spark maturing, Hadoop MapReduce mature

2017 Big Data & FrameWorks 80

=1 Contact Info :

+ Nima Farajian
m Telephone : +98 912 297 3630
| Telegram : @nimad3air
m Email : Nimaff2000@yahoo.com
+ Mehdi Habibzadeh
m Telephone : +98 912 326 7046
W Telegram : +1 514 632 2838
m Email : Nimahm@gmail.com
Zahra Rezael
B Telephone:+989133615108
m Telegram :@Z_Rezaei2010
B Email ; z.rezaei2010@gmail.com

2017

Big Data & FrameWorks

('x

81

mailto:Nimahm@gmail.com
mailto:z.rezaei2010@gmail.com

