
Hadoop, a distributed framework for Big Data

2017 Big Data & Frameworks 1

By: Zahra Rezaei

z.rezaei2010@gmail.com

Outline

Hadoop - Basics

HDFS

Yarn

MapReduce

Spark

Related Apache sub-projects (Pig, HBase,Hive)

2017 Big Data & FrameWorks 2

Apache Hadoop

•A framework for storing & processing Petabyte of data using

commodity hardware and storage

•Apache project

• Implemented in Java

•Community of contributors is growing
• Yahoo: HDFS and MapReduce

• Powerset: HBase

• Facebook: Hive and FairShare scheduler

• IBM: Eclipse plugins

2017 Big Data & FrameWorks 3

What is Hadoope?

Software platform that lets one easily write and run applications that process vast

amounts of data. It includes:

– MapReduce – offline computing engine

– HDFS – Hadoop distributed file system

– HBase (pre-alpha) – online data access

Yahoo! is the biggest contributor

2017 Big Data & FrameWorks 4

Here's what makes it especially useful:

Scalable: process petabytes.

Economical: processing across clusters (in thousands).

Efficient: By distributing the data, it can process it in parallel on the nodes where

the data is located.

Reliable: It automatically maintains multiple copies of data and automatically

redeploys computing tasks based on failures.

2017 Big Data & FrameWorks 5

Apache top level project, open-source implementation of frameworks for reliable,

scalable, distributed computing and data storage.

It is a flexible and highly-available architecture for large scale computation and

data processing on a network of commodity hardware.

2017 Big Data & FrameWorks 6

Designed to answer the question: “How to process big data with reasonable cost

and time?”

2017 Big Data & FrameWorks 7

History of Hadoop

Started as a sub-project of Apache Nutch

Nutch’s job is to index the web and expose it for searching

Started by Doug Cutting

In 2004 Google publishes Google File System (GFS) and MapReduce framework

papers

The Google File System - 2003

2017 Big Data & FrameWorks 8

History of Hadoop

2017 Big Data & FrameWorks 9

History of Hadoop

2017 Big Data & FrameWorks 10

And Now

2017 Big Data & FrameWorks 11

Organization used hadoop

2017 Big Data & FrameWorks 12

Hadoop system principles

Scale-Out rather than Scale-Up

Bring code to data rather than data to code

Deal with failures – they are common

Abstract complexity of distributed and concurrent applications

2017 Big Data & FrameWorks 13

Code to Data

Traditional data processing architecture

Nodes are broken up into separate processing and storage nodes connected by

high-capacity link

Many data-intensive applications are not CPU demanding causing bottlenecks in

network

2017 Big Data & FrameWorks 14

BRING CODE TO DATA

Hadoop co-locates processors and storage

Code is moved to data (size is tiny, usually in KBs)

Processors execute code and access underlying local storage

2017 Big Data & FrameWorks 15

Failures are Common

Given a large number machines, failures are common

Large warehouses may see machine failures weekly or even daily

Hadoop is designed to cope with node failures

• Data is replicated

• Tasks are retried

2017 Big Data & FrameWorks 16

Abstract Complexity

Frees developer from worrying about systemlevel challenges

processing pipelines, data partitioning, code distribution

Allows developers to focus on application development and business logic

2017 Big Data & FrameWorks 17

Distribution Vendors

Cloudera Distribution for Hadoop (CDH)

MapR Distribution

Hortonworks Data Platform (HDP)

Apache BigTop Distribution

2017 Big Data & FrameWorks 18

2017 Big Data & FrameWorks 19

2017 Big Data & FrameWorks 20

Hadoop projects

HDFS : A distributed filesystem that runs on large clusters of commodity

machines

MapReduce : A distributed data processing model

Hbase : A distributed, column-oriented database.

Hive : A distributed data warehouse. Hive manages data stored in HDFS and

provides a query language based on SQL

2017 Big Data & FrameWorks 21

Pig : A data flow language and execution environment for exploring very large

datasets

ZooKeeper : A distributed, highly available coordination service.

2017 Big Data & FrameWorks 22

Hadoop Distributed File System

Appears as a single disk

Runs on top of a native filesystem

Ext3,Ext4,…

Based on Google's Filesystem GFS

Fault Tolerant

Can handle disk crashes, machine crashes, etc...

portable Java implementation

2017 Big Data & FrameWorks 23

HDFS is Good for...

Storing large files

Terabytes, Petabytes, etc...

Millions rather than billions of files

100MB or more per file

Streaming data

Write once and read-many times patterns

Optimized for streaming reads rather than random reads

“Cheap” Commodity Hardware

No need for super-computers, use less reliable commodity hardware

2017 Big Data & FrameWorks 24

HDFS is not so good for …

Low-latency reads

High-throughput rather than low latency for small chunks of data

HBase addresses this issue

Large amount of small files

Better for millions of large files instead of billions of small files

For example each file can be 100MB or more

Multiple Writers

Single writer per file

2017 Big Data & FrameWorks 25

HDFS Architecture
Master-Slave Architecture

HDFS Master “Namenode”
Manages all filesystem metadata

File name to list blocks + location mapping

File metadata (i.e. “inode”)

Collect block reports from Datanodes on block locations

Controls read/write access to files

Manages block replication

HDFS Slaves “Datanodes”
Notifies NameNode about block-IDs it has

Serve read/write requests from clients

Perform replication tasks upon instruction by namenode

Rack-aware

2017 Big Data & FrameWorks 26

2017 Big Data & FrameWorks 27

2017 Big Data & FrameWorks 28

HDFS Architecture

Secondary Namenode

Performs house keeping work so Namenode doesn’t have to

Requires similar hardware as Namenode machine

Not used for high-availability – not a backup for Namenode

2017 Big Data & FrameWorks 29

2017 Big Data & FrameWorks 30

Files and Blocks

2017 Big Data & FrameWorks 31

REPLICA MANGEMENT

A common practice is to spread the nodes across multiple racks

improve data reliability, availability, and network bandwidth utilization

Namenode determines replica placement

2017 Big Data & FrameWorks 32

HDFS Component Communication

2017 Big Data & FrameWorks 33

handshake

During startup each DataNode connects to the NameNode and performs a

handshake

The purpose is to verify the namespace ID and the software version

After the handshake the DataNode registers with the NameNode

2017 Big Data & FrameWorks 34

block report

A block report contains the block id, the length for each block replica

The first is sent immediately after the DataNode registration

Subsequent block reports are sent every hour.

2017 Big Data & FrameWorks 35

heartbeats

During normal operation DataNodes send heartbeats to the NameNode to confirm

that the DataNode is operating and the block replicas it hosts are available.

Heartbeats from a DataNode also carry information about:

Total storage capacity

Fraction of storage in use

The default heartbeat interval is three seconds

2017 Big Data & FrameWorks 36

Resd,Write, Append,Delete

Using the FileSystem API:

an open() method to get the input stream for a file

The create() methods for writing

append to an existing file using the append() method

Use the delete() method on FileSystem to permanently remove files or directories

2017 Big Data & FrameWorks 37

Reading Data From HDFS

2017 Big Data & FrameWorks 38

Writing Data To HDFS

2017 Big Data & FrameWorks 39

YARN

Hadoop MapReduce Classic
MapReduce Classic Limitations:

Scalability

Maximum Cluster size – 4,000 nodes

Maximum concurrent tasks – 40,000

Coarse synchronization in JobTracker

•Availability

• Failure kills all queued and running jobs

•Hard partition of resources into map and reduce slots

• Low resource utilization

Lacks support for alternate paradigms and services

Iterative applications implemented using MapReduce are 10x slower

2017 Big Data & FrameWorks 40

Hadoop as Next‐Gen Platform

2017 Big Data & FrameWorks 41

YARN Architecture and Concepts

Application

• Application is a job submitted to the framework

• Example – Map Reduce Job

• Container

• Basic unit of allocation

• Fine‐grained resource allocation across multiple resource types (memory, cpu, disk, network,

gpu etc.)

• container_0 = 2GB, 1CPU

• container_1 = 1GB, 6 CPU

• Replaces the fixed map/reduce slots

2017 Big Data & FrameWorks 42

2017 Big Data & FrameWorks 43

Hadoop Architecture

2017 Big Data & FrameWorks 44

What is MapReduce?

Parallel programming model meant for large clusters

• User implements Map() and Reduce()

Parallel computing framework

Libraries take care of EVERYTHING else

Parallelization

Fault Tolerance

Data Distribution

Load Balancing

Useful model for many practical tasks (large data)

2017 Big Data & FrameWorks 45

Functional Abstractions Hide Parallelism

Map and Reduce

Functions borrowed from functional programming languages (eg. Lisp)

Map()

Process a key/value pair to generate intermediate key/value pairs•

Reduce()

Merge all intermediate values associated with the same key

2017 Big Data & FrameWorks 46

Map Reduce

2017 Big Data & FrameWorks 47

Distributed Processing

2017 Big Data & FrameWorks 48

2017 Big Data & FrameWorks 49

Map-Reduce on Large Clusters

Motivation and Demand:

Tend to be very short, code-wise

Represent a data flow

2017 Big Data and Frameworks (By: Habibzadeh) 50

Map-Reduce (Cont.)

2017 Big Data and Frameworks (By: Habibzadeh) 51

Map-Reduce (Cont.)

2017 Big Data and Frameworks (By: Habibzadeh) 52

Map-Reduce (Cont.)

Each step has one Map phase and one Reduce phase

Convert any into MapReduce pattern

Great solution for one-pass computations

Not very efficient for Multi-pass computations and algorithms

2017 Big Data and Frameworks (By: Habibzadeh) 53

Map/Reduce in Python

• import sys

• for line in sys.stdin:

• line = line.strip()

• words = line.split()

• for word in words:

• print '%s\t%s' % (word,1)

2017 Big Data & FrameWorks 54

Word count

• from operator import itemgetter

• import sys

• current_word = None

• current_count = 0

• word = None

• for line in sys.stdin:

• line = line.strip()

• word, count = line.split('\t', 1)

2017 Big Data & FrameWorks 55

• try:

• count = int(count)

• except ValueError:

• continue

• if current_word == word:

• current_count += count

• else:

• if current_word:

• print '%s\t%s' % (current_word, current_count)

• current_count = count

• current_word = word

• if current_word == word:

• print '%s\t%s' % (current_word, current_count)

2017 Big Data & FrameWorks 56

Hadoop Framework

Features :

Open Source Framework for Processing Large Data

Work on Cheap and Unreliable Clusters

Known in Companies who deal with Big Data Applications

Compatible with Java, Python and Scala

2017 Big Data and Frameworks (By: Habibzadeh) 57

Hadoop Framework (Cont.)

MapReduce Framework

Assign work for different nodes

Hadoop Distributed File System (HDFS)

Primary storage system used by Hadoop applications.

Copies each piece of data and distributes to individual nodes

Name Node (Meta Data) and Data Nodes (File Blocks)

Redundant information (Three times by default)

Machines in a given cluster are cheap and unreliable

Decreases the risk of catastrophic failure

» Even in the event that numerous nodes fail

Links together the file systems on different nodes to make an integrated big file system

(Parallel Processing(

2017 Big Data and Frameworks (By: Habibzadeh) 58

Hadoop Framework (Cont.)

Hadoop V.2 : Hadoop NextGen MapReduce (YARN)

2017 Big Data and Frameworks (By: Habibzadeh) 59

Hadoop Framework (Cont.)

Hadoop Programming

Java

Full control of MapReduce , Cascading (Open Java Library)

Python , Scala, Ruby

Data Retrieval / Query Language

Hive

SQL- Like Language

Pig

Data Flow Language (Simple and Out of Small Steps)

Scalding

Library built on top of Scala (Elegant Model)

2017 Big Data and Frameworks (By: Habibzadeh) 60

Hadoop Framework (Cont.)

2017 Big Data and Frameworks (By: Habibzadeh) 61

Big Data Programming

R – Java- Python and Scala (Commonly Used)

Three References : (Recommended to Read)

https://www.linkit.nl/knowledge-base/177/4_most_used_languages_in_big_data_projects_Java

https://www.linkit.nl/knowledge-base/226/4_most_used_languages_in_big_data_projects_R

https://www.linkit.nl/eng/knowledge-

base/196/4_most_used_languages_in_big_data_projects_Python

2017 Big Data and Frameworks (By: Habibzadeh) 62

https://www.linkit.nl/knowledge-base/177/4_most_used_languages_in_big_data_projects_Java
https://www.linkit.nl/knowledge-base/226/4_most_used_languages_in_big_data_projects_R
https://www.linkit.nl/eng/knowledge-base/196/4_most_used_languages_in_big_data_projects_Python

Apache Spark Framework

Spark Features (More than Distributed Processing)

Ease of use, and sophisticated analytics

In-memory data storage and near real-time processing

Holds intermediate results in memory

Store as much as data in memory and then goes to disk

Spark vs Hadoop

On top of existing HDFS

Data sets that are diverse in nature (Text, Videos, …)

Variety in source of data (Batch v. real-time streaming data).

100 times faster in memory, 10 times faster when running on disk.

2017 Big Data and Frameworks (By: Habibzadeh) 63

Apache Spark Framework (Cont.)

2017 Big Data and Frameworks (By: Habibzadeh) 64

Apache Spark Framework (Cont.)

Compatible with Java, Scala and Python

Perform Data Analytics and Machine Learning

SQL Queries, Streaming Data

Machine Learning and Graph Data Processing

Spark MLlib, Spark’s Machine Learning library

Spark and data stored in a Cassandra database

(Case Study)

2017 Big Data and Frameworks (By: Habibzadeh) 65

Apache Flink

Apache Flink is an open source platform

Distributed stream and batch data processing.”

https://flink.apache.org/

The definition in wikipedia:

https://en.wikipedia.org/wiki/Apache_Flink

2017 Big Data and Frameworks (By: Habibzadeh) 66

https://flink.apache.org/
https://en.wikipedia.org/wiki/Apache_Flink

Apache Flink (Cont.)

written in Java and Scala, consists of:

Big data processing engine:

Distributed and scalable streaming dataflow engine

Several APIs in Java / Scala / Python:

DataSet API – Batch processing

DataStream API – Real-Time streaming analytics

Domain-Specific Libraries:

FlinkML: Machine Learning Library for Flink

Gelly: Graph Library for Flink

Table: Relational Queries

FlinkCEP: Complex Event Processing for Flink

2017 Big Data and Frameworks (By: Habibzadeh) 67

Apache Flink (Cont.)

2017 Big Data and Frameworks (By: Habibzadeh) 68

Apache Flink (Cont.)

2017 Big Data and Frameworks (By: Habibzadeh) 69

Real-Time stream processing
Machine Learning at scale

Graph Analysis

Batch Processing

Big Data and Cloud

Cloud Computing Platform & Services

(Cloudera, Hortonworks, MapR, Azure)

2017 Big Data and Frameworks (By: Habibzadeh) 70

Apache Spark

Processing engine; instead of just “map” and “reduce”, defines a large set of

operations (transformations & actions)

Operations can be arbitrarily combined in any order

Open source software

Supports Java, Scala and Python

Key construct: Resilient Distributed Dataset (RDD)

2017 Big Data & FrameWorks 71

RDD Operations

2017 Big Data & FrameWorks 72

Sample Spark transformations

map(func): Return a new distributed dataset formed by passing each element of

the source through a function func.

filter(func): Return a new dataset formed by selecting those elements of the

source on which func returns true

union(otherDataset): Return a new dataset that contains the union of the

elements in the source dataset and the argument.

2017 Big Data & FrameWorks 73

Sample Spark Actions

intersection(otherDataset): Return a new RDD that contains the intersection of

elements in the source dataset and the argument.

distinct([numTasks])): Return a new dataset that contains the distinct elements of

the source dataset

join(otherDataset, [numTasks]): When called on datasets of type (K, V) and (K, W),

returns a dataset of (K, (V, W)) pairs with all pairs of elements for each key. Outer

joins are supported through leftOuterJoin, rightOuterJoin, and fullOuterJoin.

2017 Big Data & FrameWorks 74

Sample Spark Actions

reduce(func): Aggregate the elements of the dataset using a function func (which

takes two arguments and returns one). The function should be commutative and

associative so that it can be computed correctly in parallel.

collect(): Return all the elements of the dataset as an array at the driver program.

This is usually useful after a filter or other operation that returns a sufficiently

small subset of the data.

count(): Return the number of elements in the dataset.

2017 Big Data & FrameWorks 75

Spark Architecture

2017 Big Data & FrameWorks 76

2017 Big Data & FrameWorks 77

Fault tolerance because an RDD know how to recreate and re-compute the datasets.

RDDs are immutable.

Hadoop and Spark

2017 Big Data & FrameWorks 78

Gray sort competition: Winner Spark-based (previously MR)

2017 Big Data & FrameWorks 79

Sort benchmark, Daytona Gray: sort of 100 TB of data (1 trillion records)

http://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html

Spark vs. Hadoop MapReduce

Performance: Spark normally faster but with caveats

Spark can process data in-memory; Hadoop MapReduce persists back to the disk after a map

or reduce action

Spark generally outperforms MapReduce, but it often needs lots of memory to do well; if there

are other resource-demanding services or can’t fit in memory, Spark degrades

MapReduce easily runs alongside other services with minor performance differences, & works

well with the 1-pass jobs it was designed for

Ease of use: Spark is easier to program

Data processing: Spark more general

Maturity: Spark maturing, Hadoop MapReduce mature

2017 Big Data & FrameWorks 80

Contact Info :

Nima Farajian

Telephone : +98 912 297 3630

Telegram : @nima555ir

Email : Nimaff2000@yahoo.com

Mehdi Habibzadeh

Telephone : +98 912 326 7046

Telegram : +1 514 632 2838

Email : Nimahm@gmail.com

Zahra Rezaei

Telephone:+989133615108

Telegram :@Z_Rezaei2010

Email : z.rezaei2010@gmail.com

2017 Big Data & FrameWorks 81

mailto:Nimahm@gmail.com
mailto:z.rezaei2010@gmail.com

